Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lunar nodal tide and distance to the Moon during the Precambrian

Abstract

The pace of tidal evolution for the past 450 Myr implies an Earth/Moon collision some 1,500–2,000 Myr BP (see ref. 1), an event for which there is no corroborating evidence. Here we present the first direct determination of the lunar distance in the Precambrian. We interpret a 23.3±0.3-yr periodicity preserved in a 2,500 Myr BP Australian banded iron formation (BIF)2 as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records3–10. The lunar distance at 2,500 Myr BP would then have been about 52 Earth radii. The implied history of Precambrian tidal friction is in accord with both the more recent palaeontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today11–13 also evolve with the Earth–Moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lambeck, K. The Earth's variables Rotation (Cambridge University Press, New York, 1980).

    Book  Google Scholar 

  2. Trendall, A. F. Econ. Geol. 68, 1089–1097 (1973).

    Article  CAS  Google Scholar 

  3. Currie, R. G. J. geophys. Res. 86, 11055–11064 (1981).

    Article  ADS  Google Scholar 

  4. Currie, R. G. J. geophys. Res. 89, 1295–1308 (1984).

    Article  ADS  Google Scholar 

  5. Vines, R. G. J. geophys. Res. 87, 7303–7311 (1982).

    Article  ADS  Google Scholar 

  6. Currie, R. G. J. geophys. Res. 89, 7215–7230 (1984).

    Article  ADS  Google Scholar 

  7. Currie, R. G. Geophys. Res. Lett. 10, 1089–1092 (1983).

    Article  ADS  Google Scholar 

  8. Campbell, W. H., Blechman, J. B. & Bryson, R. A. J. Clim. appl. Met. 22, 289–296 (1983).

    Google Scholar 

  9. Currie, R. G. Geophys. Res. Lett. 11, 50–53 (1984).

    Article  ADS  Google Scholar 

  10. Hameed, S., Yeh, W.M., Cess, R.D. & Wang, W.C. Geophys. Res. Lett. 10, 436–439 (1983).

    Article  ADS  Google Scholar 

  11. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 1294, 1121–1132 (1976).

    Article  ADS  Google Scholar 

  12. Crowley, T.J. Rev. Geophys. 21, 828–877 (1983).

    Article  ADS  Google Scholar 

  13. Lorius, C. et al. Nature 316, 591–596 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Brosche, P. & Sündermann, J. (eds) Tidal Friction and the Earth's Rotation (Springer, New York, 1978).

    Google Scholar 

  15. Brosche, P. & Sündermann, J. (eds) Tidal Friction and the Earth's Rotation Vol. 2 (Springer, New York, 1982).

  16. Cazenave, A. in Tidal Friction and the Earth's Rotation Vol. 2 (eds Brosche, P. & Sündermann, J.) 4–18 (Springer, New York, 1982).

    Book  Google Scholar 

  17. Scrutton, C. T. in Tidal Friction and the Earth's Rotation (eds Brosche, P. & Sündermann, J.) 154–196 (Springer, New York, 1978).

    Google Scholar 

  18. Trendall, A. F. in Iron Formations: Facts and Problems (eds Trendall, A. F. & Morris, R. C.) 69–129 (Elsevier, New York, 1983).

    Book  Google Scholar 

  19. Clegg, S. L. & Wigley, T. M. L. Geophys. Res. Lett. 11, 1219–1222 (1984).

    Article  ADS  Google Scholar 

  20. Hameed, S. Geophys. Res. Lett. 843–845 (1984).

    Article  ADS  Google Scholar 

  21. Kaula, W. M. An Introduction to Planetary Physics (Wiley, Toronto, 1969).

    Google Scholar 

  22. Berger, A. Astr. Astrophys. 51, 127–135 (1976).

    ADS  Google Scholar 

  23. Berger, A. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  24. Ward, W. R. Icarus 50, 444–448 (1982).

    Article  ADS  Google Scholar 

  25. Goldreich, P. Rev. Geophys. 4, 411–439 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J., Zahnle, K. Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320, 600–602 (1986). https://doi.org/10.1038/320600a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320600a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing