Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 20 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 319, 401 - 402 (30 January 1986); doi:10.1038/319401a0

Electroreception and electrolocation in platypus

Henning Scheich*, Gerald Langner*, Chris Tidemann, Roger B. Coles & Anna Guppy

*Zoological Institute, Technical University Darmstadt, Schnittspahnstrasse 3, 6100 Darmstadt, FRG
Zoology Department and Research School of Biological Sciences, Australian National University, PO Box 475, Canberra City, ACT 2601, Australia

Electroreceptors with sensitivity in the microvolt range, which mainly function to detect live prey, are well known in phylogenetically old fishes and some amphibians1–4. In African mormyriform and South American gymnotiform fishes this sense has evolved to an active system using an electric organ as a source for impedance measurement of the environment and for communication5,6. Electroreception in higher vertebrates has not previously been reported. Here we establish that the platypus, the Australian nocturnal diving monotreme, can locate and avoid objects on the basis of d.c. fields. High–frequency sensitivity to a.c. could allow the detection of muscle activity of animals, such as crustaceans, which are preyed on by the platypus. Recordings of cortical evoked potentials showed that the bill of the platypus, previously considered to be exclusively mechanoreceptive7–9, is also an electroreceptive organ with behavioural and electrophysiological sensitivity of ~50 µV cm−1. Several lines of evidence suggest that electroreception has evolved independently in this monotreme.

  1. Bullock, T. H. A. Rev. Neurosci. 5, 121−170 (1982). | Article | ISI | ChemPort |
  2. Fritzsch, B. & Wahnschaffe, U. Cell Tissue Res. 229, 483−503 (1983). | PubMed | ISI | ChemPort |
  3. Kalmijn, A. J. in Handbook of Sensory Physiology Vol. III/3, 147−200 (Springer, Berlin, 1974).
  4. Scheich, H. in Biophysics, 764−776 (Springer, Berlin, 1983).
  5. Heiligenberg, W. Principles of Electrolocation and Jamming Avoidance in Electric Fish (Springer, Berlin, 1977).
  6. Scheich, H. & Bullock, T. H. in Handbook of Sensory Physiology Vol. III/3 201−256 (Springer, Berlin, 1974).
  7. Bohringer, R. C. & Rowe, M. J. J. comp. Neurol. 174, 1−14 (1977). | PubMed | ISI | ChemPort |
  8. Poulton, E. B. J. Physiol., Lond. 5, 15−16 (1885).
  9. Wilson, J. T. & Martin, C. J. Linn. Soc. NSW, Macleay mem. Vol., 190−200 (1893).
  10. Digkgraaf, S. & Kalmijn, A. J. Z. vergl. Physiol. 47, 438−456 (1963).
  11. Himstedt, W., Kopp, J. & Schmidt, W. Naturwissenschaftern 69, 552 (1982).
  12. Crowther, A. B. Pap. Proc. R. Soc. Tasm., 96−99 (1879).
  13. Faragher, R. A., Grant, T. R. & Carrick, F. N. Aust. J. Ecol. 4, 171−179 (1979). | ISI |
  14. Grant, T. R., Williams, R. & Carrick, F. N. Aust. Zool. 19, 117−124 (1977).
  15. Andres, K. H. & von Düring, M. in Sensory Receptor Mechanisms 81−89 (World Science, Singapore, 1984).
  16. Münz, H., Claas, B. & Fritzsch, B. J. comp. Physiol. A154, 33−44 (1983). | ISI |
  17. Bennett, M. V. L. in Fish Physiology, 492−600 (Academic, London, 1971).
  18. Szabo, T. in Handbook of Sensory Physiology Vol. III/3, 13−58 (Springer, Berlin, 1974).



© 1986 Nature Publishing Group
Privacy Policy