Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution

Abstract

The only well-understood mechanism of zymogen activation is that of the serine proteinases, in which proteolytic cleavage leads to conformational changes resulting in a functional active site. A different mechanism is now unveiled by the crystal structure of pepsinogen. Salt bridges that stabilize the positioning of the N-terminal proenzyme segment across the active site of pepsin are disrupted at low pH, releasing the amino-terminal segment and thereby exposing the catalytic apparatus and the substrate-binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kassell, B. & Kay, J. Science 180, 1022–1027 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Neurath, H. Science 224, 350–357 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Huber, R. & Bode, W. Acc. chem. Res. 11, 114–121 (1978).

    Article  CAS  Google Scholar 

  4. Herriott, R. M. J. gen. Physiol. 22, 65–78 (1939).

    Article  Google Scholar 

  5. Perlmann, G. E. J. molec. Biol. 6, 452–464 (1963).

    Article  CAS  Google Scholar 

  6. McPhie, P. J. biol. Chem. 247, 4277–4281 (1972).

    CAS  PubMed  Google Scholar 

  7. Bustin, M. & Conway-Jacobs, A. J. biol. Chem. 246, 615–620 (1971).

    CAS  PubMed  Google Scholar 

  8. Funatsu, M., Harada, Y., Hayashi, K. & Jirgensons, B. Agric. biol. Chem. 35, 566–572 (1971).

    CAS  Google Scholar 

  9. Funatsu, M., Harada, Y., Hayashi, K. & Kaneda, T. Agric. biol. Chem. 36, 305–312 (1972).

    CAS  Google Scholar 

  10. Al-Janabi, J., Hartsuck, J. A. & Tang, J. J. biol. Chem. 247, 4628–4632 (1972).

    CAS  PubMed  Google Scholar 

  11. Ong, E. B. & Perlmann, G. E. J. biol. Chem. 243, 6104–6109 (1968).

    CAS  PubMed  Google Scholar 

  12. Pedersen, V. B. & Foltmann, B. FEBS Lett. 35, 255–256 (1973).

    Article  CAS  Google Scholar 

  13. Foltmann, B. Essays Biochem. 17, 52–84 (1981).

    CAS  PubMed  Google Scholar 

  14. Tang, J. et al. Proc. natn. Acad. Sci. U.S.A. 70, 3437–3439 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Sepulveda, P., Marciniszyn, J., Liu, D. & Tang, J. J. biol. Chem. 250, 5082–5088 (1975).

    CAS  PubMed  Google Scholar 

  16. Dykes, C. W. & Kay, J. Biochem. J. 153, 141–144 (1976).

    Article  CAS  Google Scholar 

  17. Kay, J. & Dykes, C. W. in Acid Proteases, Structure, Function, and Biology (ed. Tang, J.) 103–127 (Plenum, New York, 1977).

    Book  Google Scholar 

  18. Christensen, K. A., Pedersen, V. B. & Foltmann, B., FEBS Lett. 76, 214–218 (1977).

    Article  CAS  Google Scholar 

  19. James, M. N. G. & Sielecki, A. R. J. molec. Biol. 163, 299–361 (1983).

    Article  CAS  Google Scholar 

  20. Rao, S. N., Koszelak, S. N. & Hartsuck, J. A. J. biol. Chem. 252, 8728–8730 (1977).

    CAS  PubMed  Google Scholar 

  21. James, M. N. G., Sielecki, A. R., Salituro, F., Rich, D. H. & Hofmann, T. Proc. natn. Acad. Sci. U.S.A. 79, 6137–6141 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Green, D. W., Ingram, V. M. & Perutz, M. F. Proc. R. Soc. A225, 287–295 (1954).

    ADS  CAS  Google Scholar 

  23. Rossmann, M. G. The Molecular Replacement Method (Gordon & Breach, New York, 1972).

  24. Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (Indian Academy of Sciences, International Union of Crystallography, Bangalore, 1980).

    Google Scholar 

  25. Sielecki, A. R. et al. J. molec. Biol. 781–804 (1979).

  26. Hsu, I.-N., Delbaere, L. T. J., James, M. N. G. & Hofmann, T. Nature 266,140–145 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Subramanian, E. et al. Proc. natn. Acad. Sci. U.S.A. 74, 556–559 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Andreeva, N. S., Zdanov, A. S., Gustchina, A. E. & Fedorov, A. A. J. biol. Chem. 259, 11353–11365 (1984).

    CAS  PubMed  Google Scholar 

  29. Tang, J., James, M. N. G., Hsu, I.-N., Jenkins, J. A. & Blundell, T. L. Nature 271, 618–621 (1978).

    Article  ADS  CAS  Google Scholar 

  30. James, M. N. G., Sielecki, A. R. & Moult, J. in Peptides, Structure and Function (eds Hruby, V. & Rich, D.) 521–530 (Pierce Chemical Company, Rockford, Illinois, 1983).

    Google Scholar 

  31. Hofmann, T., Hodges, R. S. & James, M. N. G. Biochemistry 23, 635–643 (1984).

    Article  CAS  Google Scholar 

  32. James, M. N. G. & Sielecki, A. R. Biochemistry 24, 3701–3713 (1985).

    Article  CAS  Google Scholar 

  33. Bott, R., Subramanian, E. & Davies, D. R. Biochemistry 21, 6956–6962 (1982).

    Article  CAS  Google Scholar 

  34. Bott, R. R. & Davies, D. R. in Peptides, Structure and Function (eds Hruby, V. & Rich, D.) 531–540 (Pierce Chemical Company, Rockford, Illinois, 1983).

    Google Scholar 

  35. Foltmann, B. & Pedersen, V. B. in Acid Proteases, Structure, Function and Biology (ed. Tang, J.) 3–22 (Plenum, New York, 1977).

    Book  Google Scholar 

  36. Bernstein, F. C. et al. J. molec. Biol. 112, 535‐542 (1977).

    Article  CAS  Google Scholar 

  37. Dunn, B. M. et al. J. biol. Chem. 253, 7269–7275 (1978).

    CAS  PubMed  Google Scholar 

  38. Powers, J. C., Harley, A. D. & Myers, D. V. in Acid Proteases, Structure, Function, and Biology (ed. Tang, J.) 141–157 (Plenum, New York, 1977).

    Book  Google Scholar 

  39. James, M. N. G., Hsu, I.-N. & Delbaere, L. T. J. Nature 267, 808–813 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, M., Sielecki, A. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution. Nature 319, 33–38 (1986). https://doi.org/10.1038/319033a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319033a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing