Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 17 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 318, 366 - 367 (28 November 1985); doi:10.1038/318366a0

Kinship, reciprocity and synergism in the evolution of social behaviour

David C. Queller

Department of Biology, Rice University, PO Box 1892, Houston, Texas 77251, USA

There are two ways to model the genetic evolution of social behaviour. Population genetic models using personal fitness1 –9 may be exact and of wide applicability, but they are often complex and assume very different forms for different kinds of social behaviour. The alternative, inclusive fitness models10 –12, achieves simplicity and clarity by attributing all fitness effects of a behaviour to an expanded fitness of the actor. For example, Hamilton's rule states that an altruistic behaviour will be favoured when −c + rb>0, where c is the fitness cost to the altruist, b is the benefit to its partner, and r is their relatedness. But inclusive fitness results are often inexact for interactions between kin1–5, and they do not address phenomena such as reciprocity13–15 and synergistic effects7,8,16 that may either be confounded with kinship or operate in its absence. Here I develop a model the results of which may be expressed in terms of either personal or inclusive fitness, and which combines the advantages of both; it is general, exact, simple and empirically useful. Hamilton's rule is shown to hold for reciprocity as well as kin selection. It fails because of synergistic effects, but this failure can be corrected through the use of coefficients of synergism, which are analogous to the coefficient of relatedness.

------------------

References

1. Boorman, S. A. & Levitt, P. R. The Genetics of Altruism (Academic, New York, 1980).
2. Charlesworth, B. J. theor. Biol. 72, 297−319 (1978). | PubMed | ISI | ChemPort |
3. Templeton, A. R. Am. Nat. 114, 515−524 (1979). | Article | ISI |
4. Cavalli-Sforza, L. L. & Feldman, M. W. Theor. popul. Biol. 14, 268−280 (1978). | PubMed | ChemPort |
5. Uyenoyama, M. K. & Feldman, M. W. Am. Nat. 120, 614−627 (1982). | Article | ISI |
6. Wade, M. J. Am. Nat. 125, 61−73 (1985). | Article | ISI |
7. Matessi, C. & Jayakar, S. D. Theor. popul. Biol. 9, 360−387 (1976). | PubMed | ISI | ChemPort |
8. Cohen, D. & Eschel, I. Theor. popul Biol. 10, 276−302 (1976). | PubMed | ISI | ChemPort |
9. Wilson, D. S. The Natural Selection of Populations and Communities (Benjamin/Cummings, Menlo Park, 1980).
10. Hamilton, W. D. J. theor. Biol. 7, 1−52 (1964). | PubMed | ISI | ChemPort |
11. Seger, J. J. theor. Biol. 91, 191−213 (1981). | PubMed | ISI | ChemPort |
12. Michod, R. E. A. Rev. ecol. Syst. 13, 23−55 (1982). | Article | ISI |
13. Trivers, R. L. Q. Rev. Biol. 46, 35−57 (1971). | Article | ISI |
14. Axelrod, R. & Hamilton, W. D. Science 211, 1390−1396 (1981). | PubMed | ISI | ChemPort |
15. Brown, J. S., Sanderson, M. J. & Michod, R. E. J. theor. Biol. 99, 319−339 (1982). | ISI |
16. Maynard Smith, J. in Current Problems in Sociobiology (eds. King's College Sociobiology Group) 29−44 (Cambridge University Press, 1982).
17. Price, G. R. Nature 227, 520−521 (1970). | PubMed | ISI | ChemPort |
18. Orlove, M. J. & Wood, C. L. J. theor. Biol. 73, 679−686 (1978). | PubMed | ISI | ChemPort |
19. Michod, R. E. & Hamilton, W. D. Nature 288, 694−697 (1980). | ISI |
20. Queller, D. C. Biol. J. Linn. Soc. 23, 133−143 (1984). | ISI |
21. Maynard Smith, J. Theor. popul. Biol. 18, 151−159 (1980).
22. Harvey, P. H., Bull, J. J., Pemberton, M. & Paxton, R. J. Am. Nat. 119, 710−719 (1982). | Article | ISI |
23. Bygott, J. D., Bertram, B. C. R. & Hanby, J. P. Nature 282, 839−841 (1979). | ISI |
24. Falconer, D. S. Introduction to Quantitative Genetics 2nd ed (Longman, London1981).



© 1985 Nature Publishing Group
Privacy Policy