Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 23 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 318, 347 - 349 (28 November 1985); doi:10.1038/318347a0

Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere

H. B. Singh*, L. J. Salas*, B. A. Ridley, J. D. Shetter, N. M. Donahue, F. C. Fehsenfeld§, D. W. Fahey, D. D. Parrish§, E. J. Williams§, S. C. Liu, G. Hübler§ & P. C. Murphy§

*SRI International, Menlo Park, California 94025, USA
National Center for Atmospheric Research, Boulder, Colorado 80307, USA
National Oceanic and Atmospheric Administration, Aeronomy Laboratory, Boulder, Colorado 80303, USA
§Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Present addresses: NASA Ames Research Center, Moffett Field, California 94035, USA (H.B.S. and L.J.S.).

Nitrogen oxides have a key role in the chemistry of the polluted and the unpolluted atmosphere1–4. It has been proposed that important quantities of nitrogen oxides may be contained in the form of peroxyacetyl nitrate (PAN) especially in the colder regions of the middle and upper troposphere5,6. Surface and aircraft observations of PAN have confirmed its ubiquity in the remote troposphere where it has been measured at mixing ratios of 10–500 p.p.t.v. (parts per 1012 v/v) (refs 7,8). To date, no study that is representative of the remote atmosphere has been made to assess directly the concentrations of PAN compared with that of the inorganic nitrogen oxides (NO and NO2). Here we present the first study in which the mixing ratios of PAN, and nitrogen oxides—as wellas those of peroxypropionyl nitrate (PPN) and O3 and relevant meteorological parameters—were measured concurrently at a location that receives clean, continental air. The results show that in clean conditions nitrogen oxides present in the form of PAN can be as much or more abundant than the inorganic form.

------------------

References

1. Haagen-Smit, A. J. Indust. Engng Chem. 44, 1342−1346 (1952). | ChemPort |
2. Chameides, W. L. Geophys. Res. Lett. 5, 17−20 (1978). | ISI | ChemPort |
3. Crutzen, P. J. A. Rev. Earth planet. Sci. 7, 443−472 (1979). | Article | ISI | ChemPort |
4. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. J. geophys. Res. 86, 7210−7254 (1981). | ISI | ChemPort |
5. Singh, H. B. & Hanst, P. L. Geophys. Res. Lett. 8, 941−944 (1981). | ISI | ChemPort |
6. Aikin, A. C., Herman, J. R., Maier, E. J. & McQuillan, C. J. J. geophys. Res. 87, 3105−3118 (1982). | ISI | ChemPort |
7. Singh, H. B. & Salas, L. J. Nature 302, 326−328 (1983). | ISI | ChemPort |
8. Spicer, C. W., Holdren, M. W. & Keigley, G. W. Atmos. Envir. 17, 1055−1057 (1983). | Article | ISI |
9. Bollinger, M. J. thesis, Univ. Colorado (1982).
10. Bollinger, M. J. et al. J. geophys. Res. 89, 9623−9631 (1984). | ISI | ChemPort |
11. Singh, H. B. & Salas, L. J. Atmos. Envir. 17, 1507−1516 (1983). | Article | ChemPort |
12. Lewis, T. E., Brennan, E. & Lonneman, W. A. JAPCA 33, 885−887 (1983). | ChemPort |
13. Lonneman, W. A., Bufalini, J. J. & Seila, R. L. Envir. Sci. Technol. 10, 374−380 (1976). | ISI | ChemPort |
14. Brice, K. A. et al. Atmos. Envir. 18, 2691−2702 (1984). | ISI | ChemPort |
15. Fehsenfeld, F. C. et al. J. atmos. Chem. l, 87−105 (1983).
16. Parrish, D. D. et al. J. atmos. Chem. (submitted).
17. Tanner, R. L. & Meng, Z. Envir. Sci. Technol. 18, 723−726 (1984). | ISI | ChemPort |
18. Singh, H. B., Salas, L. J., Stiles, R. & Shigeishi, H. Measurements of Hazardous Organic Chemicals in the Ambient Air (NTIS Rep. PB83-156935, 1983).
19. Grosjean, D. Envir. Sci. Technol. 16, 254−262 (1982). | ISI | ChemPort |



© 1985 Nature Publishing Group
Privacy Policy