Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 21 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 316, 366 - 369 (25 July 1985); doi:10.1038/316366a0

Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle

Toshio Yanagida, Toshiaki Arata & Fumio Oosawa

Department of Biophysical Engineering and Science, Osaka University, Toyonaka, Osaka, Japan

Muscle contraction results from a sliding movement of actin filaments induced by myosin crossbridges on hydrolysis of ATP1,2, and many non-muscle cells are thought to move using a similar mechanism3–5. The molecular mechanism of muscle contraction, however, is not completely understood6,7. One of the major problems is the mechanochemical coupling at high velocity under near-zero load8–13. Here, we report measurements of the sliding distance of an actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle in an unloaded condition. We used single sarcomeres from which the Z-lines, structures which anchor the thin filaments in the sarcomere, had been completely removed by calcium-activated neutral protease (CANP)14 and trypsin, and measured both the sliding velocity of single actin filaments along myosin filaments and the ATPase activity during sliding. Our results show that the average sliding distance of the actin filament is ≥600 Å during one ATP cycle, much longer than the length of power stroke of myosin crossbridges deduced from mechanical studies of muscle, which is of the order of 80 Å (for example, ref. 15).

------------------

References

1. Huxley, A. F. Prog. Biophys. molec. Biol. 7, 255−312 (1957). | ISI | ChemPort |
2. Huxley, H. E. Science 164, 1356−1366 (1969). | PubMed | ISI | ChemPort |
3. Kamiya, N. A. Rev. Pl Physiol. 32, 205−236 (1981). | Article | ISI | ChemPort |
4. Sheetz, M. P. & Spudich, J. A. Nature 303, 31−35 (1983). | PubMed | ISI | ChemPort |
5. Higashi-Fujime, S. J Cell Biol. 87, 569−578 (1980). | Article | PubMed | ChemPort |
6. Huxley, H. E. et al. J. molec. Biol. 169, 469−506 (1983). | PubMed | ISI | ChemPort |
7. Yanagida, T. J. J. Muscle Res. Cell Motil. 6, 43−52 (1985). | PubMed | ISI | ChemPort |
8. Huxley, A. F. Proc. R. Soc. B183, 83−86 (1976).
9. Eisenberg, E., Hill, T. L. & Chen, Y. Biophys. J. 29, 195−227 (1980). | PubMed | ISI | ChemPort |
10. Podolsky, R. J. & Nolan, A. C. Cold Spring Harb. Symp. quant. Biol. 37, 661−668 (1972). | ISI |
11. Kushmeric, M. J., Larson, R. E. & Davies, R. E. Proc. R. Soc. B174, 293−313 (1969). | ISI |
12. Irving, M. &Woledge, R. C. J. Physiol., Lond. 321, 411−422 (1981). | PubMed | ISI | ChemPort |
13. Homsher, E., Irving, M. & Wallner, A. J. Physiol., Lond. 321, 423−436 (1981). | PubMed | ISI | ChemPort |
14. Wayne, A. B., Stromer, M. H., Goll, D. E. & Suzuki, A. J. Cell Biol. 52, 367−381 (1972). | Article | PubMed | ISI | ChemPort |
15. Huxley, A. F. & Simmons, R. M. Nature 233, 533−538 (1971). | PubMed | ISI | ChemPort |
16. Wulf, E., Deboben, A., Bautz, A., Faulstaich, H. & Wieland, Th. Proc. natn. Acad. Sci. U.S.A. 76, 4498−4502 (1979). | ChemPort |
17. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58−60 (1984). | PubMed | ISI | ChemPort |
18. Arata, T., Mukohata, Y. & Tonomura, Y. J. Biochem., Tokyo 82, 801−812 (1977). | ChemPort |
19. Maruyama, K., Natori, R. & Nonomura, Y. Nature 262, 58−60 (1976). | PubMed | ISI | ChemPort |
20. Wang, K., McClure, J. & Tu, A. Proc. natn. Acad. Sci. U.S.A. 76, 3698−3702 (1979). | ChemPort |
21. Kachar, B. Science (in the press).
22. Namba, K., Wakabayashi, K. & Mitsui, T. J. molec. Biol. 138, 1−26 (1980). | PubMed | ISI | ChemPort |
23. Fujime, S. J. Physiol. Soc., Japan 29, 751−759 (1971).
24. Wakabayashi, K. & Namba, K. Biophys. Chem. 14, 111−122 (1981). | Article | PubMed | ISI | ChemPort |
25. Oosawa, F. Polyelectrolyte (Dekker, New York, 1971).
26. Yanagida, T. & Oosawa, F. J. molec. Biol. 140, 313−320 (1980). | PubMed | ISI | ChemPort |
27. Podolsky, R. J. & Nolan, A. C. Cold Spring Harb. Symp. quant. Biol. 37, 661 (1973). | ISI | ChemPort |
28. Tonomura, Y. Muscle Proteins, Muscle Contraction and Cation Transport, Chs 3, 13 (University of Tokyo Press, 1972).
29. Aata, T. & Tonomura, Y. J. Biochem., Tokyo 80, 1353−1358 (1976).
30. Wakabayashi, K., Namba, K. & Mitsui, T. in Contractile Mechanisms in Muscle (eds Pollack, J. & Sugi, H.) 237−250 (Plenum, New York, 1984). | ChemPort |
31. Tregear, R. T. & Squire, J. M. J. molec. Biol. 77, 279−290 (1973). | PubMed | ISI | ChemPort |
32. Ishiura, S., Sugita, H., Suzuki, K. & Imahori, K. J. Biochem., Tokyo 86, 579−581 (1979). | ChemPort |
33. Ishiura, S., Murofushi, H., Suzuki, K. & Imahori, K. J. Biochem., Tokyo 84, 225−230 (1978). | ChemPort |
34. Danker, P., Low, I., Hasselbach, W. & Wieland, Th. Biochim. biophys. Acta 400, 407−414 (1975). | Article | PubMed | ISI | ChemPort |
35. Yanagida, T. & Oosawa, F. 3rd Int. Congr. Cell Biol., 207 (1984).
36. Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. J. biol. Chem. 236, 2277−2283 (1961). | PubMed | ISI | ChemPort |
37. Hayashi, Y. & Tonomura, Y. J. Biochem., Tokyo 63, 101−118 (1969).



© 1985 Nature Publishing Group
Privacy Policy