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Uniting mechanics and statistics 
An adventurous scheme which seeks to incorporate thermodynamics into the quantum laws of motion 
may end arguments about the arrow of time - but only if it works. 
THE logical relationship between the laws 
of mechanics and those of thermodynam
ics deserves more attention than it usually 
receives. Thermodynamics and statistical 
mechanics are ways of describing the 
behaviour of macroscopic systems made 
from components whose behaviour is 
determined by the laws of mechanics, clas
sically those of Newton (as amended), but 
otherwise the equations of motion of 
quantum mechanics. Where the first law 
of thermodynamics is concerned, there is 
no difficulty. In both classical and quan
tum mechanics, total energy is a constant 
of the motion and is thus always con
served, at least in a closed system. 

The difficulty arises chiefly with the 
second law of thermodynamics, and not 
only because there is such a variety of 
ways in which this principle can be de
fined. But now a group of three theoreti
cians has put forward an intriguing way in 
which the laws of quantum mechanics may 
be modified so as to incorporate the sec
ond law from what appears to be the out
set.(Beretta, C. P., Gyptopoulos, E. P. & 
Park, J. L., II Nuovo Cimento B 87, 77-97; 
1985). Whether the modification pro
posed is sufficient, only time will tell, but 
the objective seems well worth the trouble 
Beretta et al. have taken. 

The difficulty is well illustrated by the 
way in which some kind of correspond
ence is established between the mechani
cal behaviour of a system and its thermo
dynamic properties. For more than a 
century, people have been brooding on 
the paradox that while the laws of classical 
(and, for that matter, quantum) mechan
ics are symmetrical with respect to time 
inversion, the second law selects from all 
possible trajectories of motion only those 
corresponding to a continual increase of 
the entropy. The arrow of time is conjured 
like a rabbit from a hat. 

The definition of entropy in terms of the 
mechanical properties of the constituents 
of a system is similarly clouded. The classi
cal model is Boltzmann's H-theorem 
(1872), which shows that the rate of 
change with time of a certain mathemati
cal construct from the probability distribu
tion of single particles in phase space will 
always be zero or negative. So Boltzmann 
argued, his quantity His admirably suited 
to be the negative of what is known in 
thermodynamics as entropy. This is argu
ment by analogy, but none the worse for 
that- if it works. 

Since Boltzmann's time, there has 

accumulated a rich literature on the 
implied paradox of the conflict between 
the irreversibility of macroscopic pro
cesses and the reversibility (in time) of the 
laws of mechanics and thus of microscopic 
processes. Indeed, the argument was 
begun by Loschmidt in 1976, but now 
even elementary text-books of thermo
dynamics reckon to give some kind of 
account of it. 

The standard explanation is that the 
apparent paradox is not a paradox at all, 
but a confusion about timescales. Any 
measure of entropy, that derived from 
Boltzmann's Hor otherwise, will fluctuate 
( and so decrease as well as increase on a 
short timescale), which is not inconsistent 
with the notion that the average value of 
the entropy should increase steadily over 
long periods of time ( or remain unchang
ed when the system is in equilibrium). 

Much the same is said of the recurrence 
paradox, based on the observation due to 
Poincare that the point in phase space 
(momentum as well as position) repres
enting the state of a classical system will 
return to more or less the same place after 
a sufficient length of time. On the face of 
things, that means that non-equilibrium 
states of a system will repeatedly recur. 
The standard resolution of that paradox is 
the observation that, for any realistic sys
tem, the interval of time between recur
rences will be huge, much greater than, 
say, the age of the Universe. Again there 
is nothing wrong with these arguments, 
but they are far from being rigorous. 

So why not take the bull by the horns, 
and build irreversibility into the laws of 
mechanics? That is the point from which 
Beretta et al. start. Properly, they 
acknowledge that they are not the first to 
tread this path. They work with quantum 
statistical mechanics, where the formalism 
is easier. They start from the equation of 
motion for the operator representing the 
state of a physical system, say m, which is, 
in operator language, dm/dt=-i/h[H,m], 
where tis time, H the Hamiltonian oper
ator of the system and i and ft the square 
route of minus once and Planck's constant 
(divided by 2:rc) respectively. The quantity 
in square brackets is the commutator of its 
two components, mH-Hm. 

The natural way to proceed is to assume 
that this equation is modified in such a way 
that the right-hand side is some other 
function of the state operator m than in 
the standard form. The objective is to find 
a form of the function which is compatible 

both with what is known of the evolution 
of thermodynamic systems and, perhaps 
more important, the dynamics of real 
microscopic systems. Beretta et al. have 
convinced themselves that the function 
they are seeking cannot be a linear func
tion of m. What they propose is the addi
tion to the right-hand side of the quantum 
equation of motion of a particular func
tion of m which, by including both the 
square root and the logarithm of the state 
operator of the system, is non-linear 
enough to satisfy anybody's taste. 

Almost magically, the system has some 
of the obviously necessary properties. For 
example, for a system in a pure quantum 
state, say that represented by a solution of 
Schrodinger's equation, the extra terms 
vanish and the simple form of the equation 
of motion applies. Similarly, constants of 
the motion in the new system are also con
stants of the motion determined by the 
simpler equation of motion. 

What can be said about the entropy? In 
reality, the state operator m is the equiva
lent of what is called the density matrix in 
quantum statistical mechanics, which is 
why Beretta et al. define entropy in terms 
of the operator mlogm, where the logar
ithm is the natural logarithm of the opera
tor m. Specifically, the entropy of the neg
ative of the trace of this operator multi
plied by Boltzmann's constant; the 
authors are able to show that is increases 
( or does not increase) in the course of 
time. 

So is this a demonstration that the laws 
of mechanics and of thermodynamics can 
indeed be combined? Not quite. For one 
thing, there are various mathematical 
problems that make some of the steps in 
the argument conjectural. Worse still, 
some of the operator functions in the 
formalism are sometimes undefined. But 
the system does have the merit of hanging 
together - the paper now published ex
tends to composite systems the treatment 
of one-component systems published a 
year ago. 

None of this implies that the arguments 
about the reconciliation between micro
scopic reversibility and macroscopic ir 
reversibility will now be stilled. Indeed, 
while for as long as the present justifica
tion of the basis of statistical mechanics 
holds water, there will be many who say 
that what Beretta et al. have done is strict
ly unnecessary. But this is a field in which 
the proof of the pudding is in the eating. 
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