Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate

Abstract

Post-meiotic segregation of alleles, which is seen, for example, in the 5:3 distribution of alleles in the products of a single meiosis in fungi, has been thought to be due to the non-repair of heteroduplex regions formed during genetic recombination. In current models of genetic recombination, heteroduplex DNA is formed either as the primary intermediate generated by two interacting non-sister chromatids1 or as a short region flanking a double-stranded gap2. The frequency of post-meiotic segregation differs for different alleles, and this is presumed to reflect the varying efficiencies with which different types of mismatches in the heteroduplex are repaired. To gain some insight into this process, we have now determined the nucleotide sequences of various yeast alleles with different post-meiotic segregation frequencies and compared the mismatches predicted to occur in heteroduplexes of these alleles with wild-type DNA with those repaired with varying efficiency in bacterial systems. A striking correlation is observed, with the mismatches predicted for high post-meiotic segregation frequency alleles being similar to mismatches repaired with low efficiency in bacteria. These results support the view that post-meiotic segregation frequency reflects heteroduplex repair efficiency and the contention that meiotic gene conversion is the result of the successful repair of heteroduplex mismatches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meselson, M. S. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Fogel, S., Choi, T., Kilgore, D., Lusnak, K. & Williamson, M. Recent Adv. Yeast molec. Biol. 1, 269–288 (1982).

    Google Scholar 

  4. Fogel, S. & Choi, T. in Trends in Molecular Genetics (eds Sinha, U. & Klingmüller, W.) 63–80 (Spectrum, Patna, 1985).

    Google Scholar 

  5. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Meth. Enzym. 101, 228–245 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Esposito, M. S. Genetics 58, 507–527 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Beacham, I. R., Schweitzer, B. W., Warrick, H. M. & Carbon, J. Gene 29, 271–279 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Fogel, S., Mortimer, R. K. & Lusnak, K. in Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 289–339 (Cold Spring Harbor Laboratory, New York, 1981).

    Google Scholar 

  10. Esposito, M. S. Molec. gen. Genet. 111, 297–299 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Thuriaux, P. et al. Curr. Genet. 1, 89–95 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. De Boer, J. G. & Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 81, 5528–5531 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Lacks, S. J. molec. Biol. 5, 119–131 (1962).

    Article  CAS  PubMed  Google Scholar 

  14. Ephrussi-Taylor, H. & Gray, T. C. J. gen. Physiol. 42, 211–231 (1966).

    Article  Google Scholar 

  15. Lacks, S. Genetics 53, 207–235 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Claverys, J.-P., Méjean, V., Gasc, A.-M. & Sicard, A. M. Proc. natn. Acad. Sci. U.S.A. 80, 5956–5960 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Kramer, B., Kramer, W. & Fritz, H.-J. Cell 38, 879–887 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Williamson, M. S. thesis, Univ. California (1984).

  19. Donohue, T. F., Farabaugh, P. J. & Fink, G. R. Gene 18, 47–59 (1982).

    Article  Google Scholar 

  20. Gasc, A.-M. & Sicard, A. M. Genetics 90, 1–18 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bennetzen, J. L. & Hall, B. D. J. biol. Chem. 257, 3018–3025 (1982).

    CAS  PubMed  Google Scholar 

  22. Donahue, T. F., Daves, R. S., Lucchini, G. & Fink, G. R. Cell 32, 89–98 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J., Lusnak, K. & Fogel, S. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature 315, 350–352 (1985). https://doi.org/10.1038/315350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing