Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 25 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 314, 183 - 184 (14 March 1985); doi:10.1038/314183a0

A test for intron function in the yeast actin gene

R. Ng*, H. Domdey§, G. Larson, J. J. Rossi & J. Abelson

*Department of Biological Sciences, University of California, Santa Barbara, California 93106, USA
Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
Department of Molecular Genetics, City of Hope Research Institute, Duarte, California 91010, USA
§Present address: Laboratorium für Molekulare Biologie—Genzentrum, Martinsried, FRG.

Many eukaryotic genes contain intervening sequences (IVS)1,2, but the rationale for their existence remains a mystery. Previous studies done in our laboratory demonstrated that the intron in a yeast tRNATyr gene, SUP6, does have a function3,4. We used the same approach to determine the role of introns in nuclear genes encoding messenger RNAs. A single actin gene with one intron exists in Saccharomyces cerevisiae 5,6. The level of actin in yeast appears to be crucial to viability: either too much or too little actin inhibits growth7. Therefore, small effects on synthesis of actin protein resulting from the removal of the actin gene intron would be expected to cause measurable changes in cell growth. In the present study, an intron-deleted actin gene was constructed in vitro and was used to replace the single resident actin gene in a haploid strain. Analysis of the cells carrying the intron-deleted actin gene shows that the intervening sequence is not essential for actin gene expression.

------------------

References

1. Abelson, J. A. Rev. Biochem. 48, 1035−1069 (1979). | Article | ISI | ChemPort |
2. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349−383 (1981). | Article | ISI | ChemPort |
3. Wallace, R. B. et al. Science 209, 1396−1400 (1980). | PubMed | ISI | ChemPort |
4. Johnson, P. F. & Abelson, J. Nature 302, 681−687 (1983). | PubMed | ISI | ChemPort |
5. Gallwitz, D. & Sures, I. Proc. natn. Acad. Sci. U.S.A. 77, 2546−2550 (1980). | ChemPort |
6. Ng, R. & Abelson, J. Proc. natn. Acad. Sci. U.S.A. 77, 3912−3916 (1980). | ChemPort |
7. Shortle, D., Haber, J. & Botstein, D. Science 217, 371−373 (1982). | PubMed | ISI | ChemPort |
8. Larson, G. P., Itakura, K., Ito, H. & Rossi, J. Gene 22, 31−39 (1983). | Article | PubMed | ISI | ChemPort |
9. Rothstein, R. Meth. Enzym. 101, 202−211 (1983). | Article | PubMed | ISI | ChemPort |
10. Jacq, C. et al. Mitochondrial Genes (eds Slonimski, P. et al.) 155−183 (Cold Spring Harbor Laboratory, New York, 1982). | ChemPort |
11. Gallwitz, D., Perrin, F. & Seidel, R. Nucleic Acids Res. 9, 6339−6350 (1981). | PubMed | ISI | ChemPort |
12. Gallwitz, D., Donath, C. & Sander, C. Nature 306, 704−707 (1983). | PubMed | ISI | ChemPort |
13. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835−4838 (1977). | ChemPort |
14. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201−5205 (1980). | ChemPort |



© 1985 Nature Publishing Group
Privacy Policy