Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lightning-induced electron precipitation

Abstract

The broadband very low frequency (VLF, 0.3–30 kHz) radiation from lightning propagates in the Earth–ionosphere cavity as impulsive signals (spherics) and in the dispersive plasma regions of the ionosphere and magnetosphere it propagates as tones of descending or rising frequency (whistlers)1. VLF radio waves propagating in the magnetospheric plasma scatter energetic electrons by whistler-mode wave–particle interactions (cyclotron resonance) into the atmosphere2–6. These electrons, through collisions with the atmospheric constituents, cause localized ionization, conductivity enhancement, visual and ultraviolet light emissions, and brems-strahlung X rays. We have reported previously on the precipitation of energetic electrons from the radiation belts by the controlled injection from the ground of VLF radio waves7,8. Here we report the first satellite measurements of electron precipitation by lightning. The measured energy deposition of these conspicuous lightning-induced electron precipitation (LEP) bursts ( 10−3 erg cm−2) is sufficient to deplete the Earth's radiation belts and to alter subionospheric radiowave propagation (1 MHz). A one-to-one correlation is found between ground-based measurements of VLF spherics and whistlers at Palmer, Antarctica, and low-altitude satellite (S81-1) measurements of precipitating energetic electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Helliwell, R. A. Whistlers and Related Ionospheric Phenomena (Stanford University Press, California 1965).

    Google Scholar 

  2. Kennel, C. F. & Petschek, H. E. J. geophys. Res. 71, 1–28 (1966).

    Article  ADS  Google Scholar 

  3. Inan, U. S., Bell, T. F. & Helliwell, R. A. J. geophys. Res. 83, 3235–3253 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Chang, H. C., Inan, U. S. & Bell, T. F. J. geophys. Res. 88, 7037–7050 (1983).

    Article  ADS  Google Scholar 

  5. Inan, U. S., Bell, T. F. & Chang, H. C. J. geophys. Res. 87, 6243–6264 (1982).

    Article  ADS  Google Scholar 

  6. Rosenberg, T. J., Helliwell, R. A. & Katsufrakis, K. P. J. geophys. Res. 76, 8445–8452 (1971).

    Article  ADS  Google Scholar 

  7. Imhof, W. L. et al. Geophys. Res. Lett. 10, 615–618 (1983).

    Article  ADS  Google Scholar 

  8. Imhof, W. L. et al. Geophys. Res. Lett. 10, 361–364 (1983).

    Article  ADS  Google Scholar 

  9. Carpenter, D. L. Radio Sci. 3, 719–724 (1968).

    Article  ADS  Google Scholar 

  10. Rycroft, M. J. Planet Space Sci. 21, 239–251 (1973).

    Article  ADS  Google Scholar 

  11. Helliwell, R. A., Mende, S. B., Doolittle, J. H., Armstrong, W. C., Carpenter, W. L. J. geophys. Res. 85, 3376–3386 (1980).

    Article  ADS  Google Scholar 

  12. Doolittle, J. H. & Carpenter, D. L. Geophys. Res. Lett. 10, 611–614 (1983).

    Article  ADS  Google Scholar 

  13. Helliwell, R. A., Katsufrakis, J. P. & Trimpi, M. L. J. geophys. Res. 78, 4679–4688 (1973).

    Article  ADS  Google Scholar 

  14. Carpenter, D. L. & La Belle, J. W. J. geophys. Res. 87, 4427–4434 (1982).

    Article  ADS  Google Scholar 

  15. Voss, H. D. et al. IEEE Trans. nucl. Sci. NS- 29, 164–168 (1982).

    Article  ADS  Google Scholar 

  16. Lyons, L. R. & Williams, D. J. J. geophys. Res. 80, 3985–3994 (1975).

    Article  ADS  Google Scholar 

  17. Voss, H. D., Imhof, W. L., Mobilia, J., Gaines, E. E. & Reagan, J. B. Space Res. (in the press).

  18. Carpenter, D. L., Inan, U. S., Trimpi, M. L., Helliwell, R. A. & Katsufrakis, J. P. J. geophys. Res. 89 (in the press).

  19. Dungey, J. W. Planet. Space Sci. 11, 591–595 (1963).

    Article  ADS  Google Scholar 

  20. Cornwall, J. M. J. geophys. Res. 69, 1251–1259 (1964).

    Article  ADS  Google Scholar 

  21. Lyons, L. R. & Thorne, R. M. J. geophys. Res. 78, 2142–2149 (1973).

    Article  ADS  Google Scholar 

  22. Kelley, M. C. et al. J. geophys. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voss, H., Imhof, W., Walt, M. et al. Lightning-induced electron precipitation. Nature 312, 740–742 (1984). https://doi.org/10.1038/312740a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312740a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing