Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Friday 18 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 311, 472 - 474 (04 October 1984); doi:10.1038/311472a0

Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event

Nancy Y. Ip & Richard E. Zigmond*

Department of Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
*To whom correspondence should be addressed.

The mammalian superior cervical ganglion has been the classical preparation for studying cholinergic transmission between neurones1–3. Recently, however, evidence has been presented showing that, in addition to the postsynaptic changes mediated via nicotinic and muscarinic receptors, there is a non-cholinergic component to transmission in this ganglion4,5, as in frog paravertebral ganglia6,7. In the rabbit superior cervical ganglion, Ashe and Libet recorded a late, slow excitatory postsynaptic potential in response to preganglionic nerve stimulation in the presence of nicotinic and muscarinic antagonists4. We have found, in the rat superior cervical ganglion, that a postsynaptic biochemical consequence of preganglionic nerve stimulation, namely the acute activation of tyrosine 3-monooxygenase (tyrosine hydroxylase, TH; EC 1.14.16.2), is mediated in part by acetylcholine and in part by a non-cholinergic neurotransmitter5. The regulation of this enzyme activity is of particular interest because it catalyses the rate-limiting step in the biosynthesis of the postganglionic neurotransmitter, noradrenaline. In the present paper, we report that the relative importance of cholinergic and non-cholinergic transmission in the regulation of TH activity varies with the pattern of electrical stimulation of the preganglionic nerve trunk.

------------------

References

1. Feldberg, W. & Gaddum, J. H. J. Physiol., Lond. 81, 305−319 (1934). | ChemPort |
2. Eccles, R. M. J. Physiol., Lond. 117, 181−195 (1952). | PubMed | ISI | ChemPort |
3. Skok, V. I. Physiology of Autonomic Ganglia (I Shoin, Tokyo, 1973).
4. Ashe, J. H. & Libet, B. J. Physiol., Lond. 320, 333−346 (1981). | PubMed | ISI | ChemPort |
5. Ip, N. Y., Perlman, R. L. & Zigmond, R. E. Proc. natn. Acad. Sci. U.S.A. 80, 2081−2085 (1983). | ChemPort |
6. Nishi, S. & Koketsu, K. J. Neurophysiol. 31, 109−121 (1968). | PubMed | ISI | ChemPort |
7. Jan, L. Y. & Jan, Y. N. J. Physiol., Lond. 327, 219−246 (1982). | PubMed | ISI | ChemPort |
8. Ip, N. Y., Perlman, R. L. & Zigmond, R. E. J. Pharmac. exp. Ther. 223, 280−283 (1982). | ISI | ChemPort |
9. Libet, B. Fedn Proc. 29, 1945−1956 (1970). | ChemPort |
10. McIsaac, R. J. J. Pharmac. exp. Ther. 200, 107−116 (1977). | ISI | ChemPort |
11. Volle, R. L. Pharmacology of Ganglionic Transmission (ed. Kharkevich, D. A.) 385−410 (Springer, Berlin, 1980). | ChemPort |
12. Brown, D. A. Pharmacology of Ganglionic Transmission (ed. Kharkevich, D. A.) 185−235 (Springer, Berlin, 1980). | ChemPort |
13. Ip, N. Y., Ho, C. K. & Zigmond, R. E. Proc. natn. Acad. Sci. U.S.A. 79, 7566−7569 (1982). | ChemPort |
14. Ip, N. Y., Baldwin, C. & Zigmond, R. E. Peptides 5, 309−312 (1984). | Article | PubMed | ISI | ChemPort |
15. Burnstock, G. et al. Neurosci. Res. Prog. Bull. 17, 383−486 (1979). | ISI |
16. Tsunoo, A., Konishi, S. & Otsuka, M. Neuroscience 7, 2025−2037 (1982). | Article | PubMed | ISI | ChemPort |
17. Anderson, P-O. et al. J. Physiol., Lond. 322, 469−483 (1982). | PubMed |
18. Gainer, H. in Comparative Endocrinology (eds Gaillard, P. J. & Boer, H. H.) 293−304 (Elsevier/North-Holland Biomedical, Amsterdam, 1978). | ChemPort |
19. Iggo, A. & Vogt, M. J. Physiol., Lond. 150, 114−133 (1960). | PubMed | ISI | ChemPort |
20. Anderson, P-O., Bloom, S. R. & Järhult, J. J. Physiol., Lond. 334, 293−307 (1983). | PubMed |



© 1984 Nature Publishing Group
Privacy Policy