Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of soluble myosin in cortical contractions of Xenopus eggs

Abstract

The layer of cytoplasm underlying the plasmalemma of Xenopus eggs has contractile activity which is of vital importance in fertilization and early development, being involved in such processes as sperm engulfment, cortical granule exocytosis, development of the axes of embryonic symmetry and cleavage1–3. In amphibian eggs this layer is also involved in wound healing and changes of cellular shape at gastrulation4–6. Two kinds of contractile structures can be distinguished near the surface of Xenopus eggs7,8. To characterize the mechanism and regulation of this contractile activity, we have experimentally induced cortical contractions in bisected living Xenopus eggs. We have shown previously that cortical contractions are induced by calcium ions in the bisected egg7. Here we show that extraction of soluble cytoplasmic components prevents the calcium-induced contractions, but that addition of exogenous soluble myosin restores them. In oocytes, both soluble and insoluble components of the cortical cytoplasm are unable to support contraction. Thus, during meiotic maturation of oocytes into eggs, both of the components of the cortical cytoplasm must change so as to become competent for contraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gerhart, J., Black, S., Gimlich, R. & Scharf, S. in Time, Space and Pattern in Embryonic Development (eds Jeffery, W. R. & Raff, R. A.) 261–286 (Liss, New York, 1983).

    Google Scholar 

  2. Vacquier, V. D. Devl Biol. 84, 1–26 (1981).

    Article  CAS  Google Scholar 

  3. Elinson, R. P. Devl Biol. 47, 257–268 (1975).

    Article  CAS  Google Scholar 

  4. Holtfreter, J. J. exp. Zool. 93, 251–323 (1943).

    Article  Google Scholar 

  5. Holtfreter, J. J. exp. Zool. 94, 261–317 (1943).

    Article  Google Scholar 

  6. Merriam, R. W. & Christensen, K. J. Embryol. exp. Morph. 75, 11–20 (1983).

    CAS  PubMed  Google Scholar 

  7. Merriam, R. W. & Sauterer, R. A. J. Embryol. exp. Morph. 76, 51–65 (1983).

    CAS  PubMed  Google Scholar 

  8. Merriam, R. W., Sauterer, R. A. & Christensen, K. Devl Biol. 95, 439–446 (1983).

    Article  CAS  Google Scholar 

  9. Meeusen, R. L. & Cande, W. Z. J. Cell Biol. 82, 57–65 (1979).

    Article  CAS  Google Scholar 

  10. Huffman-Berling, H. Biochim. biophys. Acta 14, 182–194 (1954).

    Article  Google Scholar 

  11. Hoffman-Berling, H. Biochim. biophys. Acta 19, 453–463 (1956).

    Article  Google Scholar 

  12. Holzapfel, G., Wehland, J. & Weber, K. Expl Cell Res. 148, 117–126 (1983).

    Article  CAS  Google Scholar 

  13. Cande, W. Z., Tooth, P. J. & Kendrick-Jones, J. J. Cell Biol. 97, 1062–1071 (1983).

    Article  CAS  Google Scholar 

  14. Burnside, B., Smith, B., Nagata, M. & Porrello, K. J. Cell Biol. 92, 199–206 (1982).

    Article  CAS  Google Scholar 

  15. Owaribe, K., Kodama, R. & Eguchi, G. J. Cell Biol. 90, 507–514 (1981).

    Article  CAS  Google Scholar 

  16. Broschat, K. O., Stidwill, R. P. & Burgess, D. R. Cell 35, 561–571 (1983).

    Article  CAS  Google Scholar 

  17. Moreau, M., Doree, M. & Guerrier, P. J. exp. Zool. 197, 443–449 (1976).

    Article  CAS  Google Scholar 

  18. Belanger, A. M. & Schuetz, A. W. Devl Biol. 45, 378–381 (1975).

    Article  CAS  Google Scholar 

  19. Dumont, J. N. J. Morph. 136, 153–180 (1972).

    Article  CAS  Google Scholar 

  20. Masui, Y. & Clarke, H. J. Int. Rev. Cytol. 57, 185–282 (1979).

    Article  CAS  Google Scholar 

  21. Wasserman, W. J., Richter, J. D. & Smith, L. D. Devl Biol. 89, 152–158 (1982).

    Article  CAS  Google Scholar 

  22. Dettlaff, T. A. J. Embryol. exp. Morph. 16, 183–195 (1966).

    CAS  PubMed  Google Scholar 

  23. Scholey, J. M., Taylor, K. A. & Kendrick-Jones, J. Nature 287, 233–235 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Kuczmarski, E. R. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 77, 7292–7296 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Huchon, D., Ozon, R. & Demaille, J. G. Nature 294, 358–359 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Campanella, C. & Andreucetti, P. Devl Biol. 56, 1–10 (1977).

    Article  CAS  Google Scholar 

  27. Gardiner, D. M. & Grey, R. D. J. Cell Biol. 96, 1159–1163 (1983).

    Article  CAS  Google Scholar 

  28. Offer, G., Moos, C. & Starr, T. J. molec. Biol. 74, 653–676 (1973).

    Article  CAS  Google Scholar 

  29. Kielley, W. W. & Harrington, W. F. Biochim. biophys. Acta 41, 401–421 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, K., Sauterer, R. & Merriam, R. Role of soluble myosin in cortical contractions of Xenopus eggs. Nature 310, 150–151 (1984). https://doi.org/10.1038/310150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing