Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topological distribution of different forms of neural cell adhesion molecule in the developing chick visual system

Abstract

The cell adhesion molecule isolated from neural tissue (N-CAM) is a membrane glycoprotein which is directly involved in calcium-independent adhesion among nerve cells and their processes (for review see refs 1,2). N-CAM has an unusual carbohydrate moiety containing a large and variable amount of sialic acid, the variation reflecting both the type of tissue and its developmental age3,4. N-CAM is believed to be a ligand in the formation of cell-cell bonds5 and a decrease in sialic acid content from 30% to 10% is associated with a marked enhancement of the molecule's binding activity6–8. Antibodies to N-CAM block its function and inhibit or alter bundling of nerve fibres9, retinal cell development10–12 and nerve-muscle interaction13,14. Here we use micro-gel elec-trophoresis15 to compare N-CAM from several parts of the developing chick visual system. The results indicate that N-CAM from the retina of 5–10-day-old embryos already exists in a relatively sialic acid-poor form, whereas the tectum and optic nerve beyond the eye contain sialic acid-rich N-CAM until much later in development. These studies suggest that the perikaryon and proximal axon shaft of retinoganglion cells have N-CAM with a lower sialic acid content than the distal portion of the axons, and that resulting differences in neurite adhesivity may be an important factor in the formation of the optic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rutishauser, U. Cold Spring Harb. Symp. quant. Biol. 48, 501–514 (1983).

    Article  CAS  Google Scholar 

  2. Edelman, G. M., Hoffman, S. & Cunningham, B. A. Cold Spring Harb. Symp. quant. Biol 48, 515–526 (1983).

    Article  CAS  Google Scholar 

  3. Hoffman, S. et al. J. biol. Chem. 257, 7720–7729 (1982).

    CAS  PubMed  Google Scholar 

  4. Rothbard, J. B., Brackenbury, R., Cunningham, B. A. & Edelman, G. M. J. biol. Chem. 257, 11064–11069 (1982).

    CAS  PubMed  Google Scholar 

  5. Rutishauser, U., Hoffman, S. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 79, 685–689 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Cunningham, B. A., Hoffman, S., Rutishauser, U., Hemperly, J. J. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 80, 3116–3120 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Hoffman, S. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 80, 5762–5766 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G. & Goridis, C. Nature 304, 347–349 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Rutishauser, U., Gall, W. E. & Edelman, G. M. J. Cell Biol. 79, 382–393 (1978).

    Article  CAS  Google Scholar 

  10. Rutishauser, U., Thiery, J.-P., Brackenbury, R. & Edelman, G. M. J. Cell Biol. 79, 371–381 (1978).

    Article  CAS  Google Scholar 

  11. Buskirk, D. R., Thiery, J.-P., Rutishauser, U. & Edelman, G. M. Nature 285, 488–489 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Thanos, S., Bonhoeffer, F. & Rutishauser, U. Proc. natn. Acad. Sci. U.S.A. 81, 1906–1910 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Grumet, M., Rutishauser, U. & Edelman, G. M. Nature 295, 693–695 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Rutishauser, U., Grumet, M. & Edelman, G. M. J. Cell Biol. 97, 145–152 (1983).

    Article  CAS  Google Scholar 

  15. Neukirchen, R. O., Schlosshauer, B., Baars, S., Jackle, H. & Schwarz, U. J. biol. Chem. 257, 15229–15234 (1982).

    CAS  PubMed  Google Scholar 

  16. Rager, G. H. Development of Retinotectal Projection in the Chicken (Springer, Berlin, 1980).

    Book  Google Scholar 

  17. Towbin, H., Staehlin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Edelman, G. M. & Choung, C.-M. Proc. natn. Acad. Sci. U.S.A. 79, 7036–7040 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Halfter, W., Claviez, M. & Schwarz, U. Nature 292, 67–70 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Halfter, W., Newgreen, D. F., Sauter, J. & Schwarz, U. Devl Biol. 95, 56–64 (1983).

    Article  CAS  Google Scholar 

  21. Hawkes, R., Niday, E. & Gordon, J. Analyt. Biochem. 119, 142–147 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlosshauer, B., Schwarz, U. & Rutishauser, U. Topological distribution of different forms of neural cell adhesion molecule in the developing chick visual system. Nature 310, 141–143 (1984). https://doi.org/10.1038/310141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310141a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing