Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 17 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 310, 154 - 157 (12 July 1984); doi:10.1038/310154a0

DNA sequences of telomeres maintained in yeast

Janis Shampay*, Jack W. Szostak & Elizabeth H. Blackburn*

*Department of Molecular Biology, University of California, Berkeley, California 94720, USA
Dana-Farber Cancer Institute, and Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA

Telomeres, the ends of eukaryotic chromosomes, have long been recognized as specialized structures. Their stability compared with broken ends of chromosomes1,2 suggested that they have properties which protect them from fusion, degradation or recombination1,3,4. Furthermore, a linear DNA molecule such as that of a eukaryotic chromosome must have a structure at its ends which allows its complete replication5–8, as no known DNA polymerase can initiate synthesis without a primer. At the ends of the relatively short, multi-copy linear DNA molecules found naturally in the nuclei of several lower eukaryotes, there are simple tandemly repeated sequences9–17 with, in the cases analysed, a specific array of single-strand breaks, on both DNA strands, in the distal portion of the block of repeats9,10,17. In general, however, direct analysis of chromosomal termini presents problems because of their very low abundance in nuclei. To circumvent this problem, we have previously cloned a chromosomal telomere of the yeast Saccharomyces cerevisiae on a linear DNA vector molecule18. Here we show that yeast chromosomal telomeres terminate in a DNA sequence consisting of tandem irregular repeats of the general form C1–3A. The same repeat units are added to the ends of Tetrahymena telomeres, in an apparently non-template-directed manner, during their replication on linear plasmids in yeast. Such DNA addition may have a fundamental role in telomere replication.

------------------

References

1. McClintock, B. Genetics 23, 315−376 (1938).
2. Muller, H. J. Collecting Net 13, 181−198 (1938).
3. McClintock, B. Genetics 26, 234−282 (1941).
4. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci U.S.A. 78, 6354−6358 (1981). | ChemPort |
5. Watson, J. D. Nature new Biol. 239, 197−201 (1972). | PubMed | ISI | ChemPort |
6. Cavalier-Smith, T. Nature 250, 467−470 (1974). | PubMed | ChemPort |
7. Bateman, A. J. Nature 253, 379 (1975). | PubMed | ISI | ChemPort |
8. Dancis, B. M. & Holmquist, G. P. J. theor. Biol. 78, 211−224 (1979). | PubMed | ISI | ChemPort |
9. Blackburn, E. H. & Gall, J. G. J. molec. Biol. 120, 33−53 (1978). | PubMed | ISI | ChemPort |
10. Johnson, E. M. Cell 22, 875−886 (1980). | Article | PubMed | ISI | ChemPort |
11. Emery, H. S. & Weiner, A. M. Cell 26, 411−419 (1981). | Article | PubMed | ISI | ChemPort |
12. Katzen, A. L., Cann, G. M. & Blackburn, E. H. Cell 24, 313−320 (1981). | Article | PubMed | ISI | ChemPort |
13. Oka, Y., Shiota, S., Nakai, S., Nishida, Y. & Okubo, S. Gene 10, 301−306 (1980). | Article | PubMed | ISI | ChemPort |
14. Herrick, G. & Wesley, R. D. Proc. natn. Acad. Sci. USA. 75, 2626−2630 (1978). | ChemPort |
15. Klobutcher, L. A., Swanton, M. A., Donini, P. & Prescott, D. M. Proc. natn. Acad. Sci. U.S.A. 78, 3015−3019 (1981). | ChemPort |
16. Pluta, A. F., Kaine, B. P. & Spear, B. B. Nucleic Acids Res. 10, 8145−8154 (1982). | PubMed | ISI | ChemPort |
17. Blackburn, E. H. et al. Cold Spring Harb. Symp. quant. Biol. 47, 1195−1207 (1983). | PubMed | ISI |
18. Szostak, J. W. & Blackburn, E. H. Cell 29, 245−255 (1982). | Article | PubMed | ISI | ChemPort |
19. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499−559 (1980). | Article | PubMed | ChemPort |
20. Chan, C. S. M. & Tye, B.-K. Cell 33, 563−573 (1983). | Article | PubMed | ISI | ChemPort |
21. Stinchcomb, D. T. et al. in The Initiation of DNA Replication (ed. Ray, D. S.) 473−488 (Academic, New York, 1981).
22. Walmsley, R. W., Chan, C. S. M., Tye, B.-K. & Petes, T. D. Nature 310, 157−160 (1984). | Article | PubMed | ISI | ChemPort |
23. Walmsley, R. W., Szostak, J. W. & Petes, T. D. Nature 302, 84−86 (1983). | PubMed | ISI | ChemPort |
24. Kiss, G. B., Amin, A. A. & Pearlman, R. E. Molec. cell. Biol. 1, 535−543 (1981). | PubMed | ISI | ChemPort |
25. Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. Nature 303, 592−597 (1983). | PubMed | ISI | ChemPort |
26. Blackburn, E. H. et al. UCLA Symp. Molec. Cell. Biol. 20 (in the press).
27. Heumann, J. M. Nucleic Acids Res. 3, 3167−3171 (1976). | PubMed | ISI | ChemPort |
28. Goldbach, R. W., Ballen-de Boor, J. E., van Bruggen, E. F. J. & Borst, P. B. B. Biochim. biophys. Acta 562, 400−417 (1979). | Article | PubMed | ISI | ChemPort |
29. Din, N. & Engberg, J. J. molec. Biol. 134, 555−574 (1979). | PubMed | ISI | ChemPort |
30. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).
31. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77−90 (1979). | PubMed | ISI | ChemPort |



© 1984 Nature Publishing Group
Privacy Policy