Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terrestrial mass extinctions, cometary impacts and the Sun's motion perpendicular to the galactic plane

Abstract

Episodes of mass extinctions on the Earth are now strongly suspected to be cyclical1. We report here that our analysis of the data of Raup and Sepkoski1 suggests that the dominant cyclicity in major marine mass extinctions during at least the past 250 Myr is 30 ± 1 Myr, with the standard deviation of an individual episode being ±9 Myr. We find this terrestrial cycle to be strongly correlated with the time needed for the Solar System to oscillate vertically about the plane of the Galaxy, which is 33 ± 3 Myr according to the best current astronomical evidence. It is argued that galactic triggering or forcing of terrestrial biological crises may arise as a result of collisions (or close encounters) of the Solar System with intermediate-sized to large-sized interstellar clouds of gas and dust, which are sufficiently concentrated towards the galactic plane to produce the observed cyclicity and its scatter. Among other consequences, a nearby interstellar cloud would gravitationally perturb the Solar System's family of comets and thereby increase the flux of comets and comet-derived bodies near the Earth, leading to large-body impacts. We find a dominant cyclicity of 31 ± 1 Myr in the observed age distribution of impact craters on Earth, the phase of this cycle agreeing with that shown by the major biological crises. Our galactic hypothesis can thus simultaneously account for the mean interval between major terrestrial crises and for the 50% scatter of the time intervals about their mean value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raup, D. M. & Sepkoski, J. J. Proc. natn. Acad. Sci. U.S.A. 81, 801–805 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Stothers, R. Astr. Astrophys. 77, 121–127 (1979).

    ADS  Google Scholar 

  3. Fischer, A. G. & Arthur, M. A. Soc. Econ. Paleont. Miner. Spec. Publ. 25, 19–50 (1977).

    Google Scholar 

  4. Raup, D. M. Geol. Soc. Am. Spec. Pap. 190, 277–281 (1982).

    Google Scholar 

  5. Palmer, A. R. Geology 11, 503–504 (1983).

    Article  ADS  Google Scholar 

  6. McCrea, W. H. Proc. R. Soc. A375, 1–41 (1981).

    Article  ADS  Google Scholar 

  7. Dilke, F. W. W. & Gough, D. O. Nature 240, 262–294 (1972).

    Article  ADS  Google Scholar 

  8. Hoyle, F. & Lyttleton, R. A. Proc. Camb. phil. Soc. 35, 405–415 (1939).

    Article  ADS  Google Scholar 

  9. Shapley, H. Sky Telesc. 9, 36–37 (1949).

    ADS  Google Scholar 

  10. Steiner, J. & Grillmair, E. Bull. geol. Soc. Am. 84, 1003–1018 (1973).

    Article  Google Scholar 

  11. Williams, G. E. Earth planet. Sci. Lett. 26, 361–369 (1975).

    Article  ADS  Google Scholar 

  12. McCrea, W. H. Nature 255, 607–609 (1975).

    Article  ADS  Google Scholar 

  13. Innanen, K. A., Patrick, A. T. & Duley, W. W. Astrophys. Space Sci. 57, 511–515 (1978).

    Article  ADS  Google Scholar 

  14. Tamrazyan, G. P. Izv. Acad. Nauk Azerb. SSR 12, 85–115 (1957).

    Google Scholar 

  15. Hatfield, C. B. & Camp, C. J. Bull. geol. Soc. Am. 81, 911–914 (1970).

    Article  Google Scholar 

  16. Meyerhoff, A. A. Mem. Can. Soc. petrol. Geol. 2, 745–758 (1973).

    Google Scholar 

  17. Oort, J. H. in Galactic Structure (eds Blaauw, A. & Schmidt, M.) 455–511 (University of Chicago, 1965).

    Google Scholar 

  18. Eggen, O. J. Publ. astr. Soc. Pacif. 81, 741–753 (1969).

    Article  ADS  Google Scholar 

  19. Krisciunas, K. Astr. J. 82, 195–197 (1977).

    Article  ADS  Google Scholar 

  20. Hill, G., Hilditch, R. W. & Barnes, J. V. Mon. Not. R. astr. Soc. 186, 813–830 (1979).

    Article  ADS  Google Scholar 

  21. Rohlfs, K. & Kreitschmann, J. Astrophys. Space Sci. 79, 289–319 (1981).

    ADS  Google Scholar 

  22. Klugh, H. E. Statistics, the Essentials for Research, Ch. 10 (Wiley, New York, 1970).

    MATH  Google Scholar 

  23. Knude, J. Astr. Astrophys. 126, 89–93 (1983).

    ADS  Google Scholar 

  24. Talbot, R. J. Jr. & Newman, M. J. Astrophys. J. Suppl. 34, 295–308 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Ilovaisky, S. A. & Lequeux, J. Astr. Astrophys. 18, 169–185 (1972).

    ADS  Google Scholar 

  26. Clark, D. H. & Caswell, J. L. Mon. Not. R. astr. Soc. 174, 267–305 (1976).

    Article  ADS  Google Scholar 

  27. Terry, K. D. & Tucker, W. H. Science 159, 421–423 (1968).

    Article  ADS  CAS  Google Scholar 

  28. Ruderman, M. A. Science 184, 1079–1081 (1974).

    Article  ADS  CAS  Google Scholar 

  29. Whitten, R. C., Cuzzi, J., Borucki, W. J. & Wolfe, J. H. Nature 263, 398–400 (1976).

    Article  ADS  CAS  Google Scholar 

  30. Clark, D. H., McCrea, W. H. & Stephenson, F. R. Nature 265, 318–319 (1977).

    Article  ADS  Google Scholar 

  31. Stark, A. A. in Kinematics, Dynamics and Structure of the Milky Way (ed. Shuter, W. L. H.) 127–133 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  32. Clube, S. V. M. & Napier, W. M. Q. Jl. R. astr. Soc. 23, 45–66 (1982).

    ADS  CAS  Google Scholar 

  33. van den Bergh, S. J. R. astr. Soc. Can. 76, 303–308 (1982).

    ADS  Google Scholar 

  34. Sanders, D. B., Scoville, N. Z. & Solomon, P. M. Preprint, Univ. Massachusetts (1984).

  35. Cohen, R. S., Cong, H., Dame, T. M. & Thaddeus, P. Astrophys. J. 239, L53–56 (1980).

    Article  ADS  CAS  Google Scholar 

  36. Chandrasekhar, S. Principles of Stellar Dynamics, 190 (University of Chicago, 1942).

    MATH  Google Scholar 

  37. Vidal-Madjar, A., Laurent, C., Bruston, P. & Audouze, J. Astrophys. J. 223, 589–600 (1978).

    Article  ADS  CAS  Google Scholar 

  38. Begelman, M. C. & Rees, M. J. Nature 261, 298–299 (1976).

    Article  ADS  Google Scholar 

  39. Talbot, R. J. Jr, Butler, D. M. & Newman, M. J. Nature 262, 561–563 (1976).

    Article  ADS  Google Scholar 

  40. Butler, D. M., Newman, M. J. & Talbot, R. J. Jr Science 201, 522–525 (1978).

    Article  ADS  CAS  Google Scholar 

  41. McKay, C. P. & Thomas, G. E. Geophys. Res. Lett. 5, 215–218 (1978).

    Article  ADS  CAS  Google Scholar 

  42. Hills, J. G. Astr. J. 86, 1730–1740 (1981).

    Article  ADS  Google Scholar 

  43. Oort, J. H. Bull. astr. Inst. Neth. 11, 91–110 (1950).

    ADS  Google Scholar 

  44. Urey, H. C. Nature 242, 32–33 (1973).

    Article  ADS  Google Scholar 

  45. Napier, W. M. & Clube, S. V. M. Nature 282, 455–459 (1979).

    Article  ADS  Google Scholar 

  46. Clube, S. V. M. & Napier, W. M. Earth planet. Sci. Lett. 57, 251–262 (1982).

    Article  ADS  Google Scholar 

  47. Silver, L. T. & Schultz, P. H. (eds) Geol. Soc. Am. Spec. Pap. 190, 1–528 (1982).

  48. Pollack, J. B., Toon, O. B., Ackerman, T. P., McKay, C. P. & Turco, R. P. Science 219, 287–289 (1983).

    Article  ADS  CAS  Google Scholar 

  49. Grieve, R. A. F. Geol. Soc. Am. Spec. Pap. 190, 25–37 (1982).

    Google Scholar 

  50. Seyfert, C. K. & Sirkin, L. A. Earth History and Plate Tectonics, 383–389 (Harper & Row, New York, 1979).

    Google Scholar 

  51. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1105 (1980).

    Article  ADS  CAS  Google Scholar 

  52. Hsü, K. J. Nature 285, 201–203 (1980).

    Article  ADS  Google Scholar 

  53. Ganapathy, R. Science 216, 885–886 (1982).

    Article  ADS  CAS  Google Scholar 

  54. Alvarez, W., Asaro, F., Michel, H. V. & Alvarez, L. W. Science 216, 886–888 (1982).

    Article  ADS  CAS  Google Scholar 

  55. Keller, G., D'Hondt, S. & Vallier, T. L. Science 221, 150–152 (1983).

    Article  ADS  CAS  Google Scholar 

  56. Negi, J. G. & Tiwari, R. K. Geophys. Res. Lett. 10, 713–716 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rampino, M., Stothers, R. Terrestrial mass extinctions, cometary impacts and the Sun's motion perpendicular to the galactic plane. Nature 308, 709–712 (1984). https://doi.org/10.1038/308709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing