Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The median valley, a result of magma fracture beneath mid-ocean ridges

Abstract

The shape of the ocean floor has been successfully modelled using the framework of plate tectonics1–4. Lithospheric plates approximately 100 km thick lie above the hotter, less viscous asthensophere. At the ridges, the lithosphere thins. Plate separation is accompanied by creation of new ocean floor as the asthenosphere flows upwards and cools on approaching the surface. As a result, heat is concentrated beneath the ridge axes. Densities are lower due to thermal expansion, so that for iso-static equilibrium the sea floor sits some 6 km shallower than older sea floor, well off axis, where the temperature anomaly is absent. At fast spreading ridges (velocity v > 5 cm yr−1) such as the East Pacific Rise, this description fits well. A central ridge crest is flanked on either side by bathymetry which deepens in agreement with thermal models3–6 at a rate propor tional to the square root of age of creation. However at slow spreading ridges, v < 5 cm yr−1, a major central graben of order 1 km deep replaces the central ridge crest, although the square root of age dependence is observed well away from the axes. Isostatic equilibrium is not achieved7, since the sea floor lies 1–2 km below the equilibrium level. In this report I demonstrate that this graben or median valley can result from steady state dyke intrusion into, and brittle failure of, the axial lithosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKenzie, D. P. J. geophys. Res. 72, 6261–6273 (1967).

    Article  ADS  Google Scholar 

  2. McKenzie, D. P. & Sclater, J. G. Bull. Volcanol. 33, 101–117 (1969).

    Article  ADS  Google Scholar 

  3. Parker, R. L. & Oldenburg, D. W. Nature 242, 137–139 (1973).

    Article  ADS  Google Scholar 

  4. Oldenburg, D. W. Geophys. J. R. astr. Soc. 43, 425–451 (1975).

    Article  ADS  Google Scholar 

  5. Davis, E. E. & Lister, C. R. B. Earth planet. Sci. Lett. 21, 405–413 (1974).

    Article  ADS  Google Scholar 

  6. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  7. Watts, A. B. in Continental and Oceanic Rifts, Geodynamic Series No. 8 (ed. Palmason, A. G.) 99–104 (AGU, Washington DC, 1982).

    Book  Google Scholar 

  8. Turcotte, D. L. J. geophys. Res. 79, 2573–2577 (1974).

    Article  ADS  Google Scholar 

  9. Tapponnier, P. & Francheteau, J. J. geophys. Res. 83, 3955–3970 (1978).

    Article  ADS  Google Scholar 

  10. Leeds, A. R. thesis, Univ. Calif., Los Angeles (1974)

  11. McKenzie, D. P. and Bowin, C. J. geophys. Res. 81, 1903–1915 (1976).

    Article  ADS  Google Scholar 

  12. Cochran, J. R. J. geophys. Res. 84, 4713–4729 (1979).

    Article  ADS  Google Scholar 

  13. McNutt, M. J. geophys. Res. 84, 7589–7598 (1979).

    Article  ADS  Google Scholar 

  14. Gass, I. G. Nature 220, 39–42 (1968).

    Article  ADS  CAS  Google Scholar 

  15. Williams, H. Geol. Surv. Can. Pap. 72–34, 1–7 (1973).

  16. Salisbury, M. H. & Christensen, N. I. J. geophys. Res. 83, 805–817 (1978).

    Article  ADS  Google Scholar 

  17. Duffield, W. A., Jackson, D. B. & Swanson, D. A. in Proc. Sym. Andean and Antarctic Volcanology Problems 577–587 (Giannini and Figli, Napoli, 1976).

    Google Scholar 

  18. Bjornsson, A., Johnsen, G., Sigurdsson, S., Thorbergsson, G. & Tryggvason, E. J. geophys. Res. 84, 3029–3037 (1979).

    Article  ADS  Google Scholar 

  19. Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. & Okamura, A. T. Tectonophysics 94, 541–584 (1983).

    Article  ADS  Google Scholar 

  20. Davis, P. M. J. geophys. Res. 88, 5826–5834 (1983).

    Article  ADS  Google Scholar 

  21. Maruyama, T. Bull. Earthquake Res. Inst. 42, 289–368 (1964).

    Google Scholar 

  22. Flugge, W. Viscoelasticity (Springer Verlag, New York 1975).

    Book  Google Scholar 

  23. Collette, B. J., Verhoef, J. & Mulder, A. F. J. J. Geophys. 47, 91–98 (1980).

    Google Scholar 

  24. Sleep, N. H. J. geophys. Res. 74, 542–549 (1969).

    Article  ADS  Google Scholar 

  25. Sleep, N. H. & Biehler, S. J. geophys. Res. 75, 2748–2752 (1970).

    Article  ADS  Google Scholar 

  26. Deffreyes, K. S. in Megatectonics of Continents and Oceans (eds Johnson, H. & Smith, B. L., 1922) (Rutgers University Press, New Brunswick, New Jersey 1970).

    Google Scholar 

  27. Anderson, R. N. & Noltimer, H. C. Geophys. J. R. astr. Soc. 34, 137–147 (1973).

    Article  ADS  Google Scholar 

  28. Lachenbruch, A. H. J. geophys. Res. 81, 1883–1902 (1976).

    Article  ADS  Google Scholar 

  29. Sleep, N. H. & Rosendahl, X. X. J. geophys. Res. 84, 6831–6839 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, P. The median valley, a result of magma fracture beneath mid-ocean ridges. Nature 308, 53–55 (1984). https://doi.org/10.1038/308053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing