Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Monday 23 October 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 307, 344 - 345 (26 January 1984); doi:10.1038/307344a0

Mystery cloud of AD 536

R. B. Stothers

Institute for Space Studies, NASA Goddard Space Flight Center, 2880 Broadway, New York, New York 10025, USA

Dry fogs appear in the atmosphere when large volcanic eruptions inject massive quantities of fine silicate ash and aerosol-forming sulphur gases into the troposphere and stratosphere. Although the ash gravitationally settles out within weeks, the aerosols spread around the globe and can remain suspended in the stratosphere for years. Because solar radiation is easily absorbed and backscattered by the volcanic particles, a haziness in the sky and a dimming of the Sun and Moon are produced. Very dense and widespread dry fogs occur, on the average, once every few centuries1–3. The sizes and intensities of some of the largest of them before the modern scientific era have been estimated by several indirect methods2,4,5. The densest and most persistent dry fog on record was observed in Europe and the Middle East during AD 536 and 537. Despite the earliness of the date, there is sufficient detailed information to estimate the optical depth and mass of this remarkable stratospheric dust cloud. The importance of this cloud resides in the fact that its mass and its climatic consequences appear to exceed those of any other volcanic cloud observed during the past three millenia. Although the volcano responsible remains a mystery, a tropical location (perhaps the volcano Rabaul on the island of New Britain, Papua New Guinea) can be tentatively inferred.



1. Russell, F. A. R. The Eruption of Krakatoa and Subsequent Phenomena (ed. Symons, G. J.) 384−405 (Truebner, London, 1888).
2. Lamb, H. H. Phil. Trans. R. Soc. A266, 425−533 (1970). | ISI |
3. Stothers, R. B. & Rampino, M. R. Science 222, 411−413 (1983). | ISI |
4. Deirmendjian, D. Adv. Geophys. 16, 267−296 (1973).
5. Hammer, C. U., Clausen, H. B. & Dansgaard, W. Nature 288, 230−235 (1980). | ISI |
6. Stothers, R. B. & Rampino, M. R. J. geophys. Res. 88, 6357−6371 (1983). | ISI |
7. Procopius History of the Wars (transl. Dewing, B. H.) 2.4.1−2, 4.14.5−6 (Harvard University Press, Cambridge, Massachusetts, 1916).
8. Lydus, J. L. On Portents (ed. Wachsmuth, C.) 9c (Teubner, Leipzig, 1863).
9. Zacharias of Mytilene Chronicle (transl. Hamilton, F. J. & Brooks, E. W.) 9.19, 10.1 (Methuen, London, 1899).
10. Michael the Syrian Chronicle (transl, (into French) Chabot, J.-B.) 9.296 (Belles-Lettres, Paris, 1901).
11. Bar-Hebraeus Chronography (transl. Budge, E. A. W.) 8.79−80 (Oxford University Press, London, 1932).
12. Minnaert, M. The Nature of Light and Colour in the Open Air (transl. Kremer-Priest, H. M. & Jay, K. E. B.) 55, 269 (Dover, New York, 1954).
13. Allen, C. W. Astrophysical Quantities, 125−127 (Athlone, London, 1973).
14. Blanco, V. M. & McCuskey, S. W. Basic Physics of the Solar System, 93 (Addison-Wesley, Reading, Massachusetts, 1961).
15. Heming, R. F. Bull. geol. Soc. Am. 85, 1253−1264 (1974). | ChemPort |
16. Walker, G. P. L., Heming, R. F., Sprod, T. J. & Walker, H. R. Geol. Surv. Papua New Guinea Mem. 10, 181−193 (1981).
17. Seltzer, L. E. (ed.) The Columbia Lippincott Gazetteer of the World, 1309 (Columbia University Press, New York, 1952).
18. Herron, M. M. J. geophys. Res. 87, 3052−3060 (1982). | ISI | ChemPort |
19. Stothers, R. B. Science (in the press).
20. Ho Peng Yoke Vistas Astr. 5, 127−225 (1962). | Article |
21. John of Ephesus Ecclesiastical History (transl, (into Latin) van Douwen, W. J. & Land, J. P. N.) 297−298 (Muller, Amsterdam, 1889).
22. Post, J. D. The Last Great Subsistence Crisis in the Western World, 55−59 (Johns Hopkins University Press, Baltimore, Maryland, 1977).

© 1984 Nature Publishing Group
Privacy Policy