Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum

Abstract

Ungerstedt1 observed that the dopamine-containing innervation of the forebrain can be divided into two parts: a nigrostriatal system, originating mainly in the pars compacta of the substantia nigra and innervating the caudoputamen; and a mesolimbic system arising mainly in the ventral tegmental area and innervating the nucleus accumbens and olfactory tubercle. This classification has since been modified and extended with the discovery of the mesocortical dopamine system2,3. The original distinction between nigrostriatal and mesolimbic systems nevertheless was pivotal in suggesting that the basal ganglia are related to limbic as well as to sensorimotor functions, and remains of interest because dopaminergic mechanisms may be implicated not only in the aetiology of sensorimotor impairments such as those of Parkinson's disease4, but also in neuropsychiatric disorders such as schizophrenia5–7. The striatal targets of the mesolimbic and nigrostriatal systems are now known to be distinct also in terms of forebrain connections, despite some overlap of fibre projections18,19. The nucleus accumbens–olfactory tubercle region and abutting caudoputamen (together called the ‘ventral’ or ‘limbic’ striatum) are characteristically related to limbic parts of the forebrain, whereas the large remainder of the caudoputamen (the ‘dorsal’ or ‘non-limbic’ striatum) is most closely related to sensorimotor regions19,20,34. We report here evidence that the mesolimbic and nigrostriatal systems are differentially affected in the mutant mouse weaver, and in particular that dopamine is severely depleted in the dorsal striatum of weaver but relatively spared in the ventral striatum. We conclude that dopamine-containing fibre systems innervating the limbic and non-limbic striatum can be influenced separately in genetic disease and that genetic control, whether direct or indirect, may be exerted at the single-gene level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ungerstedt, U., Acta physiol. scand. 82, Suppl. 367, 1–48 (1971).

    Article  Google Scholar 

  2. Thierry, A. M., Blanc, G., Sobel, A., Stinus, L. & Glowinski, J. Science 182, 499–501 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lindvall, O., Björklund, A., Moore, R. Y. & Stenevi, U. Brain Res. 81, 325–331 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Hornykiewicz, O. Wiener Klinische Wochenschrift 75, 309–312 (1963).

    CAS  PubMed  Google Scholar 

  5. Stevens, J. R. Arch. Gen. Psychiatry 29, 177–189 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Iversen, L. L. Science 199, 1084–1089 (1975).

    Article  ADS  Google Scholar 

  7. Mackay, A. V. P., Iversen, L. L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I. & Snyder, S. H. Arch. Gen. Psychiatry 39, 991–997 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Sidman, R. L. in Physiological and Biochemical Aspects of Nervous Integration (ed. Carlson, F. D.) 164–193 (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968).

    Google Scholar 

  9. Lane, J. D., Nadi, N. S., McBride, W. J., Aprison, M. H. & Kusano, K. J. Neurochem. 29, 349–350 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, M. J., Sawyer, B. D., Perry, K. W., Fuller, R. W., Foreman, M. M. & Ghetti, B. J. Neurosci. 2, 376–380 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rakic, P. & Sidman, R. L. J. of Comp. Neurol. 152, 103–132 (1973).

    Article  CAS  Google Scholar 

  12. Roffler-Tarlov, S. & Turey, M. Brain Res. 247, 65–73 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Zigmond, R. & Ben-Ari, Y. J. Neurochem. 26, 1285–1287 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Moyer, T. P. & Jiang, N.-S. J. Chromatography 153, 365–372 (1978).

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. I., Farr, A. L. & Randall, R. J. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  16. de la Torre, J. C. J. Neurosci. Methods 3, 1–5 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Versteeg, D. H. G., Van der Gugten, De Jong, W. & Palkovits, M. Brain Res. 113, 563–574 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Fallon, J. H. & Moore, R. Y. J. Comp. Neurol. 180, 545–580 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Kelley, A. E., Domesick, V. B. & Nauta, W. J. H. Neuroscience 7, 615–630 (1982).

    Google Scholar 

  20. Heimer, L. & Wilson, R. D. in Golgi Centennial Symposium (ed. Santini, M.) 177–193 (Raven Press, New York, 1975).

    Google Scholar 

  21. Beckstead, R. M., Domesick, V. B. & Nauta, W. J. H. Brain Res. 175, 191–217 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Rezai, Z. & Yoon, C. H. Develop. Biol. 29, 17–26 (1972).

    Article  CAS  PubMed  Google Scholar 

  23. Sotelo, C. & Changeaux, J.-P. Brain Res. 77, 484–491 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Goldowitz, D. & Mullen, R. J. J. Neurosci. 2, 1474–1485 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hatten, M. E., Liem, R. K. H., Shelanski, M. L. & Mason, C. A. Society for Neuroscience Abstract, 63.21 (1982).

    Google Scholar 

  26. Willinger, M., Margolis, D. M. & Sidman, R. L. J. Supramol. Struc. and Cell. Biochem. 17, 79–86 (1981).

    Article  CAS  Google Scholar 

  27. Levitt, P. & Noebels, J. L. Proc. natn. Acad. Sci. U.S.A. 78, 4630–4634 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Boehme, R. E. & Ciaranello, R. D. Brain Res. 266, 51–65 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Ross, R. A., Judd, A. B., Pickel, V. M., Joh, T. M. & Reis, D. J. Nature 264, 654–656 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Baker, H., Joh, T. H. & Reis, D. J. Proc. natn. Acad. Sci. U.S.A. 77, 4369–4373 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Iversen, S. D. & Fray, P. J. in The Neural Basis of Behavior 229–269 (Spectrum Publications, Inc., (1982).

    Book  Google Scholar 

  32. Fuxe, K., Fredholm, B. B., Agnati, L. F. & Corrodi, H. Brain Res. 146, 295–311 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. von Sattel, J.-P., Ferrante, R. J. & Richardson, E. P. J. Neuropath. and Exp. Neurol., submitted.

  34. Graybiel, A. M. & Ragsdale, C. W. in Development and Chemical Specificity of Neurons (eds Cuénod, M., Kreutzberg, G. W. & Bloom, F. E.) 239–283 (Elsevier, Amsterdam, 1979).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roffler-Tarlov, S., Graybiel, A. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 307, 62–66 (1984). https://doi.org/10.1038/307062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307062a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing