Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of copper, zinc superoxide dismutase

Abstract

Copper, zinc superoxide dismutase (SOD) catalyses the very rapid two-step dismutation of the toxic superoxide radical (O2) to molecular oxygen and hydrogen peroxide through the alternate reduction and oxidation of the active-site copper1. We report here that after refitting and further refinement of the previous 2 Å structure of SOD2, analysis of the new model and its calculated molecular surface shows an extensive surface topography of sequence-conserved residues stabilized by underlying tight packing and H-bonding. There is a single, highly complementary position for O2 to bind to both the Cu(II) and activity-important Arg 141 with correct geometry; two water molecules form a ghost of the superoxide in this position. The geometry and molecular surface of the active site, together with biochemical data, suggest a specific model for the enzyme mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fridovich, I. Adv. inorg. Biochem. 1, 67–90 (1979).

    CAS  Google Scholar 

  2. Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S. & Richardson, D. C. J. molec. Biol. 160, 181–217 (1982).

    Article  CAS  Google Scholar 

  3. Richardson, J. S. Nature 268, 495–500 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Hermans, J. & McQueen, J. E. Acta crystallogr. A30, 730–739 (1974).

    Article  Google Scholar 

  5. Wlodawer, A. & Hendrickson, W. A. Acta crystallogr. A38, 239–247 (1982).

    Article  Google Scholar 

  6. Getzoff, E. D. thesis, Duke Univ. (1982).

  7. Connolly, M. L. Science 221, 709–713 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Connolly, M. L. Quantum Chemistry Program Exchange Bull. 1, 75 (1981).

    Google Scholar 

  9. Richards, F. M. A. Rev. Biophys. Bioengng 6, 151–176 (1977).

    Article  CAS  Google Scholar 

  10. Steinman, H. M., Naik, V. R., Abernethy, J. L. & Hill, R. L. J. biol. Chem. 249, 7326–7338 (1974).

    CAS  PubMed  Google Scholar 

  11. Steinman, H. M. J. biol. Chem. 255, 6758–6765 (1980).

    CAS  PubMed  Google Scholar 

  12. Jabusch, J. R., Farb, D. L., Kerschensteiner, D. A. & Deutsch, H. F. Biochemistry 19, 2310–2316 (1980).

    Article  CAS  Google Scholar 

  13. Lerch, K. & Ammer, D. J. biol. Chem. 256, 11545–11551 (1981).

    CAS  PubMed  Google Scholar 

  14. Klug, D., Rabani, J. & Fridovich, I. J. biol. Chem. 247, 4839–4842 (1972).

    CAS  PubMed  Google Scholar 

  15. Valentine, J. S. & Pantoliano, M. W. in Metal Ions in Biology Vol. 3 (ed. Spiro, T. G.), 291–358 (Wiley, New York, 1981).

    Google Scholar 

  16. Lawrence, G. D. & Sawyer, D. T. Biochemistry 18, 3045–3050 (1979).

    Article  CAS  Google Scholar 

  17. Morpurgo, L., Giovagnoli, C. & Rotilio, G. Biochim. biophys. Acta 322, 204–210 (1973).

    Article  CAS  Google Scholar 

  18. Margerum, D. W., Cayley, G. R., Weatherburn, D. C. & Pagenkopf, G. K. in Coordination Chemistry Vol. 12 (ed. Martell, A. E.) 1–220 (American Chemical Society, Washington DC, 1978).

    Google Scholar 

  19. Rigo, A., Stevanato, R., Viglino, P. & Rotilio, G. Biochem. biophys. Res. Commun. 79, 776–783 (1977).

    Article  CAS  Google Scholar 

  20. Boden, N., Holmes, M. C. & Knowles, P. F. Biochem. J. 177, 303–309 (1979).

    Article  CAS  Google Scholar 

  21. Blumberg, W. E., Peisach, J., Eisenberger, P. & Fee, J. A. Biochemistry 17, 1842–1846 (1978).

    Article  CAS  Google Scholar 

  22. McAdam, M. E. et al. Biochem. J. 167, 271–274 (1977).

    Article  CAS  Google Scholar 

  23. Rotilio, G., Calabrese, L., Mondovi, B. & Blumberg, W. E. J. biol. Chem. 249, 3157–3160 (1974).

    CAS  PubMed  Google Scholar 

  24. Burger, A. R. thesis, Columbia Univ. (1979).

  25. Beem, K. M., Richardson, D. C. & Rajagopalan, K. V. Biochemistry 16, 1930–1936 (1977).

    Article  CAS  Google Scholar 

  26. Lieberman, R. A., Sands, R. H. & Fee, J. A. J. biol. Chem. 257, 336–344 (1982).

    CAS  PubMed  Google Scholar 

  27. Van Camp, H. L., Sands, R .H. & Fee, J. A. Biochim. biophys. Acta 704, 75–89 (1982).

    Article  CAS  Google Scholar 

  28. Johnson, C. K. Oak Ridge natn. Rep. ORNL-3794 (1965).

  29. Valentine, J. S., Sheridan, R. P., Allen, L. C. & Kahn, P. C. Proc. natn. Acad. Sci. U.S.A. 76, 1009–1013 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Malinowski, D. P. & Fridovich, I. Biochemistry 18, 5909–5917 (1979).

    Article  CAS  Google Scholar 

  31. Martin, R. B. Proc. natn. Acad. Sci. U.S.A. 71, 4346–4347 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tainer, J., Getzoff, E., Richardson, J. et al. Structure and mechanism of copper, zinc superoxide dismutase. Nature 306, 284–287 (1983). https://doi.org/10.1038/306284a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306284a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing