Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular identification of a human DNA repair gene following DNA-mediated gene transfer

Abstract

Although it has long been evident that the response of eukary-otes to DNA damaging agents is determined by the effectiveness of a variety of DNA repair systems, there is little detailed knowledge of the nature of these systems or the genes which control them. In humans, a number of hereditary conditions, including xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anaemia, exhibit increased sensitivity to a variety of DNA damaging agents and a predisposition to cancer, suggesting a defect in some aspect of DNA repair1. This report describes the identification of a human DNA repair gene following DNA-mediated gene transfer into Chinese hamster ovary (CHO) mutant cells2,3, that like xeroderma pigmentosum cells, are sensitive to a variety of DNA damaging agents and are defective in the initial incision step of DNA repair4. The resulting transformants exhibit normal resistance to DNA damaging agents and independent transformants demonstrate a common set of human DNA sequences associated with a human DNA repair gene. These observations provide the basis for the isolation and characterization of the human genes responsible for DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedberg, E. C., Ehman, V. K. & Williams, J. I. Adv. radiat. Biol. 8, 85–174 (1979).

    Article  CAS  Google Scholar 

  2. Thompson, L. H., Rubin, J. S., Cleaver, J. E., Whitmore, G. F. & Brookman, K. Somat. Cell Genet. 6, 391–405 (1980).

    Article  CAS  Google Scholar 

  3. Busch, D. B., Cleaver, J. E. & Glaser, D. A. Somat. Cell Genet 6, 407–418 (1980).

    Article  CAS  Google Scholar 

  4. Thompson, L. H., Brookman, K. W., Dillenay, L. E., Mooney, C. L. & Carrano, A. V. Somat. Cell Genet. 8, 759–773 (1982).

    Article  CAS  Google Scholar 

  5. Thompson, L. H., Busch, D. B., Brookman, K., Mooney, C. L. & Glaser, D. A. Proc. natn. Acad. Sci. U.S.A. 78, 3734–3737 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Fujiwara, Y. & Tatsumi, M. J. molec. Biol. 113, 635–649 (1977).

    Article  CAS  Google Scholar 

  7. Gusella, J. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 2829–2833 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Murray, M. J. et al. Cell 25, 355–361 (1981).

    Article  CAS  Google Scholar 

  9. Perucho, M. et al. Cell 27, 467–476 (1981).

    Article  CAS  Google Scholar 

  10. Wigler, M. et al. Cell 16, 777–785 (1979).

    Article  CAS  Google Scholar 

  11. Mulligan, R. C. & Berg, P. Proc. natn. Acad. Sci. U.S.A. 78, 2072–2076 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Graham, F. L. & Van Der Eb, A. J. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  13. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Cell 14, 725–731 (1978).

    Article  CAS  Google Scholar 

  14. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  15. Takano, T., Noda, M. & Tamura, T. Nature 296, 269–270 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Stanners, C. P., Eliceiri, G. L. & Green, H. Nature 230, 52–54 (1971).

    ADS  CAS  Google Scholar 

  17. Wahl, G. M., Stein, M. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 3683–3687 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Rigby, P. W., Dieckman, M., Rhodes, C. & Berg, P. J. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, J., Joyner, A., Bernstein, A. et al. Molecular identification of a human DNA repair gene following DNA-mediated gene transfer. Nature 306, 206–208 (1983). https://doi.org/10.1038/306206a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306206a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing