Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 17 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 305, 52 - 55 (01 September 1983); doi:10.1038/305052a0

Conductance and dye permeability of a rectifying electrical synapse

Joseph F. Margiotta* & Benjamin Walcott

Department of Anatomical Sciences, Health Sciences Center, State University of New York at Stony Brook, Long Island, New York 11794, USA
*Present address: Department of Biology B-022, University of California at San Diego, La Jolla, California 92093, USA.

Electrical synapses provide a basis for efficient signal transmission in a wide variety of nervous systems1. These synapses are composed of specialized cell-to-cell contacts known as nexuses2 or gap junctions3 which mediate the direct transfer of ions and small molecules between adjacent cell interiors1,4 by way of intercellular channels embedded in the junctional membrane5. The crayfish giant motor synapse (CMS) was the first cell-to-cell junction clearly demonstrated to operate by an electrical mechanism6. Current applied to the presynaptic lateral giant (LG) axon or to the neurite of the postsynaptic giant flexor motoneurone (MoG) spreads passively through the synapse into the adjacent neurone6,7. Each GMS behaves like an electrical rectifier: its conductance is high when LG is positive with respect to MoG, and decreases dramatically when the sign of the trans-synaptic voltage is reversed6,7. We have now examined GMS conductance and dye permeability at thoracic and abdominal levels of the crayfish nerve cord. At both levels, values of GMS chord conductance fit a simple Boltzmann model in which the conductance of individual synaptic channels is assumed to be voltage dependent. Moreover, thoracic synapses display higher limiting conductances than do those at an abdominal level, apparently as a result of their larger size. We also find that synapses at both locations are permeable to the fluorescent dye Lucifer yellow, even in conditions where electrical conductance is low. These results provide a framework for understanding the operation and functional limits of rectifying electrical synapses, and illustrate that dye permeability can be associated even with their relatively low conductance condition.

------------------

References

1. Bennet, M. V. L. in Handbook of Physiology, Sect. 1, 357−416 (Williams & Wilkins, Baltimore, 1977).
2. Dewey, M. M. & Barr, L. J. Cell Biol. 23, 553−585 (1964). | Article | PubMed | ISI | ChemPort |
3. Revel, J. P. & Karnovsky, J. J. J. Cell Biol. 33, C7−C12 (1967). | Article | PubMed | ISI | ChemPort |
4. Bennet, M. V. L. & Goodenough, D. A. Neurosci. Res. Prog. Bull. 16, 375−486 (1978).
5. Unwin, P. N. T. & Zampighi, G. Nature 283, 1−5 (1980).
6. Furshpan, E. J. & Potter, D. D. Nature 180, 342−343 (1957); J. Physiol., Lond. 145, 289−325 (1959). | PubMed | ISI | ChemPort |
7. Margiotta, J. thesis, State Univ. New York (1980).
8. Wine, J. J., Mittenthal, J. E. & Kennedy, D. J. comp. Physiol. 93, 315−335 (1974). | ISI |
9. Stewart, W. Cell 14, 741−759 (1978). | Article | PubMed | ISI | ChemPort |
10. Johnson, G. E. J. comp. Neurol. 36, 323−375 (1924).
11. Mittenthal, J. E. & Wine, J. J. Science 179, 182−184 (1973); J. comp. Neurol. 177, 311−334 (1978). | PubMed | ISI | ChemPort |
12. Hanna, R. B., Keeter, J. S. & Pappas, G. D. J. Cell Biol. 79, 764−773 (1978). | Article | PubMed | ISI | ChemPort |
13. Spray, D. C., Harris, A. L. & Bennett, M. V. L. Science 204, 432−434 (1979); J. gen. Physiol. 17, 77−93 (1981). | Article |
14. Jack, J. J. B., Noble, D. & Tsien, R. W. Electrical Current Flow in Excitable Cells (Oxford University Press, 1975).
15. Ehrenstein, G. & Lecar, H. Q. Rev. Biophys. 10, 1−34 (1977). | PubMed | ISI | ChemPort |
16. Payton, B. W., Bennett, M. V. L. & Pappas, G. D. Science 166, 1642−1643 (1969).
17. Warner, A. E. & Lawrence, P. A. Nature 245, 47−49 (1973); Cell 28, 243−252 (1982). | Article | PubMed | ISI | ChemPort |
18. Simpson, I., Rose, B. & Loewenstein, W. R. Science 195, 294−296 (1977). | PubMed | ISI | ChemPort |
19. Brink, P. R. & Dewey, M. M. J. gen. Physiol. 72, 67−86 (1978). | Article | PubMed | ISI | ChemPort |
20. Keeter, J. S., Deschenes, M., Pappas, G. D. & Bennett, M. V. L. Biol. Bull. 147, 485−486 (1974). | ISI |
21. Zimmerman, A. L. & Rose, B. Biophys. J. 41, 216a (1983).
22. Watanabe, A. & Grundfest, H. J. gen. Physiol. 45, 267−308 (1961). | Article | PubMed | ISI | ChemPort |



© 1983 Nature Publishing Group
Privacy Policy