Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of trimeric haemerythrin

Abstract

Several simplifying structural principles have been developed from the considerable data contained in the three-dimensional structures of proteins determined in the past two decades. One of these is based on the observation that particular folding motifs often occur in a variety of structural and functional settings1. The compact bundle of four antiparallel α-helices2, first seen in the structure of myohaemerythrin3, is an example. Several non-haemerythrin proteins have since been found to have the same folding pattern4–7, and haemerythrins themselves exist in a wide variety of quaternary arrangements8,9. The unusual ability of the haemerythrin fold to associate as dimers, trimers, tetramers, octamers or higher aggregates provides an opportunity for examining structural diversity in subunit association. We have used X-ray crystallography to study the subunit structure of trimeric haemerythrin from a Siphonosoma species. We report here that the pattern of intersubunit helix–helix interactions differs from the most common mode of association of other helix-bundle proteins. In a novel approach to structure analysis at low resolution, experimental phases for the structure determination were based on anomalous scattering from the iron atoms native to haemerythrin, using the new resolved-anomalous phasing procedure10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Richardson, J. S. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  2. Weber, P. C. & Salemme, F. R. Nature 287, 82–84 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Hendrickson, W. A., Klippenstein, G. L. & Ward, K. B. Proc. natn. Acad. Sci. U.S.A. 72, 2160–2164 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. J. G. & Klug, A. Nature 259, 20–24 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Banyard, S. H., Stammers, D. K. & Harrison, P. M. Nature 271, 282–284 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Mathews, F. S., Bethge, P. H. & Czerwinski, E. W. J. biol. Chem. 254, 1699–1706 (1979).

    CAS  PubMed  Google Scholar 

  7. Weber, P. C. et al. Nature 286, 302–304 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Hendrickson, W. A. & Smith, J. L. in Invertebrate Oxygen-Binding Proteins: Structure, Active Site and Function (eds Lamy, J. & Lamy, J. ) 343–352 (Marcel-Dekker, New York, 1981).

    Google Scholar 

  9. Addison, A. W. & Dougherty, P. L. Comp. Biochem. Physiol. 72 B, 433–438 (1982).

    Article  Google Scholar 

  10. Hendrickson, W. A. & Teeter, M. M. Nature 290, 107–113 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Liberatore, F. A., Truby, M. F. & Klippenstein, G. L. Archs Biochem. Biophys. 160, 223–229 (1974).

    Article  CAS  Google Scholar 

  12. Addison, A. W. & Bruce, R. E. Archs Biochem. Biophys. 183, 328–332 (1977).

    Article  CAS  Google Scholar 

  13. Ward, K. B., Hendrickson, W. A. & Klippenstein, G. L. Nature 257, 818–821 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Stenkamp, R. E., Sieker, L. C., Jensen, L. H. & Loehr, J. S. J. molec. Biol. 100, 23–34 (1976).

    Article  CAS  Google Scholar 

  15. Klippenstein, G. L., Cote, J. L. & Ludlam, S. E. Biochemistry 15, 1128–1136 (1976).

    Article  CAS  Google Scholar 

  16. Klippenstein, G. L., Holleman, J. W. & Klotz, I. M. Biochemistry 7, 3868–3878 (1968).

    Article  CAS  Google Scholar 

  17. Loehr, J. S., Lammers, P. J., Brimhall, B. & Hermodson, M. A. J. biol. Chem. 253, 5726–5731 (1978).

    CAS  PubMed  Google Scholar 

  18. Bott, R. R., Navia, M. A. & Smith, J. L. J. biol. Chem. 257, 9883–9886 (1982).

    CAS  PubMed  Google Scholar 

  19. Hanson, J. C., Watenpaugh, K. D., Sieker, L. & Jensen, L. H. Acta crystallogr. A 35, 616–621 (1979).

    Article  Google Scholar 

  20. Smith, J. L. & Hendrickson, W. A. in Computational Crystallography (ed. Sayre, D. ) 209–222 (Oxford, New York, 1982).

    Google Scholar 

  21. Rossmann, M. G. Acta crystallogr. 14, 383–388 (1961).

    Article  CAS  Google Scholar 

  22. Crowther, R. A. in The Molecular Replacement Method (ed. Rossmann, M. G. ) 173–178 (Gordon & Breach, New York, 1972).

    Google Scholar 

  23. Hendrickson, W. A. & Lattman, E. E. Acta crystallogr. B 26, 136–143 (1970).

    Article  CAS  Google Scholar 

  24. Hendrickson, W. A. & Ward, K. B. J. biol. Chem. 252, 3012–3018 (1977).

    CAS  PubMed  Google Scholar 

  25. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  26. Watson, H. C. & Kendrew, J. C. Nature 190, 670–672 (1961).

    Article  ADS  CAS  Google Scholar 

  27. Sheridan, R. P., Levy, R. M. & Salemme, F. R. Proc. natn. Acad. Sci. U.S.A. 79, 4545–4549 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Stubbs, G., Warren, S. & Holmes, K. Nature 267, 216–221 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Sieker, L. C. et al. J. molec. Biol. 148, 493–494 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Hendrickson, W. & Addison, A. Structure of trimeric haemerythrin. Nature 303, 86–88 (1983). https://doi.org/10.1038/303086a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303086a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing