Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changes in cell shape and actin distribution induced by constant electric fields

Abstract

The development of motility in cultured cells is usually associated with a polarization of the cell shape. In particular, the leading edge of the cell is extended into a lamella which acts as a locus for the elaboration of cell processes and for the formation of cell-substrate contacts and, at the opposite end, retraction fibres often extend beyond the trailing edge of the cell1–3. The alignment of microfilament bundles (stress fibres) along the direction of migration and the presence of a band of actin at the leading edge of the cell suggest an involvement of this protein in the motile process4–8. The direction of growth and orientation of various cell types in tissue culture can be influenced by externally applied d.c. electric fields9 but the effect of the field on cellular motile activities is unknown. Here we describe a galvanotropic response of cultured Xenopus epithelial cells. At a field strength of 5 V cm−1 these cells elongate perpendicularly with respect to the field. The anodal side of the cell retracts and both the ends and cathodal edge become active in the extension of ruffling lamellipodia. In parallel with the change in the cell axis, stress fibres are oriented perpendicularly to the field, and a band of actin is associated with the lamellae at the cathodal edge and at the ends of the cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abercrombie, M., Heaysman, J. M. & Pegrum, S. M. Expl Cell Res. 59, 393–398 (1970).

    Article  CAS  Google Scholar 

  2. Izzard, C. S. & Lochner, L. R. J. Cell Sci. 42, 81–116 (1980).

    CAS  PubMed  Google Scholar 

  3. Buckley, I. K. & Porter, K. R. Protoplasma 64, 349–380 (1967).

    Article  CAS  Google Scholar 

  4. Buckley, I. K. Tissue Cell 6, 1–20 (1974).

    Article  CAS  Google Scholar 

  5. Small, J. V., Isenberg, G. & Celis, J. E. Nature 272, 638–639 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Small, J. V. & Langanger, G. J. Cell Biol. 91, 695–705 (1981).

    Article  CAS  Google Scholar 

  7. Herman, I. M., Crisona, N. J. & Pollard, T. D. J. Cell Biol. 90, 84–91 (1981).

    Article  CAS  Google Scholar 

  8. Heath, J. P. & Dunn, G. A. J. Cell Sci. 29, 197–212 (1978).

    CAS  PubMed  Google Scholar 

  9. Jaffe, L. F. & Nuccitelli, R. A. Rev. Biophys. Bioengng 6, 445–476 (1977).

    Article  CAS  Google Scholar 

  10. Jones, K. W. & Elsdale, T. R. J. Embryol. exp. Morph. 11, 135–154 (1963).

    CAS  PubMed  Google Scholar 

  11. Peng, H. B. & Nakajima, Y. Proc. natn. Acad. Sci. U.S.A. 75, 500–504 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Burridge, K. Nature 294, 691–692 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Abercrombie, M., Heaysman, J. E. M. & Pegrum, S. M. Expl Cell Res. 67, 359–367 (1971).

    Article  CAS  Google Scholar 

  14. Marsh, G. & Beams, H. W. J. Cell. comp. Physiol. 27, 139–157 (1946).

    Article  CAS  Google Scholar 

  15. Jaffe, L. F. & Poo, M.-M. J. exp. Zool. 209, 115–128 (1979).

    Article  CAS  Google Scholar 

  16. Patel, N. & Poo, M.-M. J. Neurosci. 2, 483–496 (1982).

    Article  CAS  Google Scholar 

  17. Hinkle, L., McCaig, C. D. & Robinson, K. R. J. Physiol., Lond. 314, 121–135 (1981).

    Article  CAS  Google Scholar 

  18. Letourneou, P. C. in Neuronal Development (ed. Spitzer, N. C.) 213–254 (Plenum, New York, 1982).

    Book  Google Scholar 

  19. Peng, H. B., Cheng, P.-C. & Wolosowick, J. J. Devl Biol. 88, 121–136 (1981).

    Article  CAS  Google Scholar 

  20. Lazarides, E. Nature 283, 249–256 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Poo, M.-M. & Robinson, K. R. Nature 265, 602–605 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Orida, N. & Poo, M.-M. Nature 275, 31–35 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Edelman, G. M. Science 192, 218–226 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Cooper, M. S. & Keller, R. E. J. Cell Biol. 95, 323a (1982).

  25. Erickson, C. A. & Nuccitelli, R. J. Cell Biol. 95, 314a (1982).

  26. Stump, R. F. & Robinson, K. R. J. Cell Biol. 95, 331a (1982).

  27. Nieukoop, P. D. & Faber, J. Normal Tables of Xenopus laevis (Daudin) (North Holland, Amsterdam, 1967).

    Google Scholar 

  28. Lin, J. J. C. Proc. natn. Acad. Sci. U.S.A. 78, 2335–2339 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, P., Peng, H. & Lin, JC. Changes in cell shape and actin distribution induced by constant electric fields. Nature 303, 61–64 (1983). https://doi.org/10.1038/303061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303061a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing