Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Short-range order of crystallin proteins accounts for eye lens transparency

Abstract

In its normal state, the eye lens is transparent despite the presence in the cell cytoplasm of high concentrations of proteins, the crystalline, which, a priori, could be expected to scatter an important part of the incident light. Early on, an explanation was sought in the spatial correlations between individual scatterers. Trokel1 first proposed that the "high concentration of proteins in the lens must be accompanied by a degree of local order approaching a paracrystalline state"; Benedek2 subsequently suggested that a dense, noncrystalline packing of the proteins would sufficiently reduce the scattered intensity. However, in spite of an improved understanding of the molecular structure of crystallins3–6, their spatial order remained unknown. We present here a small-angle X-ray scattering study of the problem, performed with calf lens cytoplasm both in intact lenses and in cytoplasmic extracts where the crystallin concentration was varied from 3 to 510 mg ml−1. All our experimental data are consistent with short-range spatial order, as in dense liquids or glasses7–9, and this provides a simple explanation for lens transparency2,10. In addition, we detected no conformational change or reorganization of the crystallin proteins throughout the investigated concentration range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trokel, S. Invest. Ophthal. 1, 493–501 (1962).

    CAS  PubMed  Google Scholar 

  2. Benedek, G. B. Appl. Opt. 10, 459–473 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Siezen, R. J., Bindels, J. G. & Hoenders, H. J. Eur. J. Biochem. 111, 435–444 (1980).

    Article  CAS  Google Scholar 

  4. Andries, C. et al. Expl Eye Res. 34, 239–255 (1982).

    Article  CAS  Google Scholar 

  5. Bloemendal, H. (ed.) in Molecular and Cellular Biology of the Eye Lens, 1–47 (Wiley-Interscience, New York, 1981).

  6. Blundell, T. et al. Nature 289, 771–777 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Guinier, A. & Fournet, G. Small Angle Scattering of X-Rays (Wiley, New York, 1955).

    MATH  Google Scholar 

  8. Mikolaj, P. G. & Pings, C. J. J. chem. Phys. 46, 1401–1411 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Finney, J. L. Nature 266, 309–314 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Delaye, M. & Gromiec, A. Biopolymers (in the press).

  11. Clark, J. I., Delaye, M., Hammer, P. & Mengel, L. Curr. Eye Res. 1 (12), 695–704 (1982).

    Article  CAS  Google Scholar 

  12. Benedetti, E. L., Dunia, I., Ramaekers, F. C. S. & Kibbelaar, M. A. in Molecular and Cellular Biology of the Eye Lens (ed. Bloemendal, H.) 137–188 (Wiley-Interscience, New York, 1981).

    Google Scholar 

  13. Luzzati, V. Acta crystallogr. 13, 939–945 (1960).

    Article  CAS  Google Scholar 

  14. Luzzati, V. & Tardieu, A. A. Rev. Biophys. Bioengng 9, 1–29 (1980).

    Article  CAS  Google Scholar 

  15. Siezen, R. J. & Berger, H. Eur. J. Biochem. 91, 397–405 (1978).

    Article  CAS  Google Scholar 

  16. Bindels, J. G. thesis, Nijmegen Univ. (1982).

  17. Zinke, M., Damaschun, G., Muller, J. J. & Ruckpaul, K. Studia biophys. berl. 71, 135–136 (1978).

    CAS  Google Scholar 

  18. Thiele, E. J. chem. Phys. 39, 474–479 (1963).

    Article  ADS  Google Scholar 

  19. Carnahan, N. F. & Starling, K. E. J. chem. Phys. 51, 635–636 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Gabriel, A. Rev. Sci. Instrum. 48, 1303–1305 (1977).

    Article  ADS  Google Scholar 

  21. Sardet, C., Tardieu, A. & Luzzati, V. J. molec. Biol. 105, 383–407 (1976).

    Article  CAS  Google Scholar 

  22. Eisenberg, H. Biological Macromolecules and Polyelectrolytes in Solution (Clarendon, Oxford, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaye, M., Tardieu, A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302, 415–417 (1983). https://doi.org/10.1038/302415a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302415a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing