Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caffeine induces a transient inward current in cultured cardiac cells

Abstract

Electrical excitation of cardiac muscle may sometimes be due to initiation of inward current by the presence of Ca2+ ions at the inner surface of the cell membrane. During digitalis toxicity and other conditions that abnormally augment cellular Ca2+ stores, premature release of Ca2+ from the sarcoplasmic retkulum leads to a transient inward current, which is large enough to initiate premature beats and is accompanied by a transient contractile response1–5 This inward current may be mediated either by electrogenic sodium–calcium exchange6 or by specific Ca2+-activated cation channels that have recently been characterized in tissue cultures of cardiac myocytes7. An obvious question raised by these observations is whether release of the sequestered Ca2+ stores during each normal beat exerts a similar influence on membrane potential. To explore this, chick embryonic myocardial cell aggregates were voltage-clamped during abrupt exposure to caffeine, which is known to release Ca2+ from the sarcoplasmic reticulum8–10. The speed of the perfusion system and the relative absence of diffusion barriers in the tissue-cultured cells allowed the effects of caffeine-induced Ca2+ release to be studied on a time scale comparable to that of a single normal beat. We report here that abrupt exposure of the cells to caffeine produced a transient inward current having similar features to that of digitalis toxicity, and which was both large enough and rapid enough to potentially contribute to the action potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lederer, W. J. & Tsien, R. W. J. Physiol., Lond. 263, 73–100 (1976).

    Article  CAS  Google Scholar 

  2. Kass, R. S., Lederer, W. J., Tsien, R. W. & Weingart, R. J. Physiol., Lond, 281, 187–208 (1978).

    Article  CAS  Google Scholar 

  3. Kass, R. S., Tsien, R. W. & Weingart, R. J. Physiol., Lond. 281, 209–226 (1978).

    Article  CAS  Google Scholar 

  4. Eisner, D. A. & Lederer, W. J. J. Physiol., Lond. 294, 297–301 (1979).

    Google Scholar 

  5. Vassalle, M. & Mugelli, A. Circulat. Res. 48, 618–631 (1981).

    Article  CAS  Google Scholar 

  6. Mullins, L. Am. J. Physiol. 236, C103–110 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Weber, A. & Herz, R. J. gen. Physiol. 52, 750–759 (1968).

    Article  CAS  Google Scholar 

  9. Jundt, H., Porzig, H., Reuter, H. & Stucki, J. W. J. Physiol., Lond. 246, 229–253 (1975).

    Article  CAS  Google Scholar 

  10. Niedergerke, R. & Page, S. Proc. R. Soc. B213, 303–324 (1981).

    ADS  CAS  Google Scholar 

  11. Clusin, W. T. Proc. natn. Acad. Sci. U.S.A. 77, 679–683 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Clusin, W. T. J. Physiol., Lond. 320, 149–174 (1981).

    Article  CAS  Google Scholar 

  13. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Nathan, R. D. & DeHaan, R. L. J. gen. Physiol. 73, 175–198 (1979).

    Article  CAS  Google Scholar 

  15. Kass, R. S. & Tsien, R. W. Biophys. J. 38, 259–269 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Clusin, W. T., Bristow, M. R., Karagueuzian, H. S., Katzung, B. G. & Schroeder, J. S. Am. J. Cardiol. 49, 606–612 (1982).

    Article  CAS  Google Scholar 

  17. Fabiato, A. & Fabiato, F. J. Physiol., Lond. 249, 469–495 (1975).

    Article  CAS  Google Scholar 

  18. Eisner, D. A. & Lederer, W. J. J. Physiol., Lond. 322, 48P (1981).

    Google Scholar 

  19. Lee, K. S. & Tsien, R. W. Nature 297, 498–501 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Clusin, W. T. in Drug-Induced Heart Disease (ed. Bristow, M. R.) 116–126 (Elsevier, Amsterdam, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clusin, W. Caffeine induces a transient inward current in cultured cardiac cells. Nature 301, 248–250 (1983). https://doi.org/10.1038/301248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301248a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing