Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Variation in genome size—an ecological interpretation

Abstract

Previous attempts to explore the significance of variation in genome size have involved comparisons with respect to life history1–4, taxonomic and evolutionary affiliations5–9 and geographical distribution10,11. Here we examine variation in the British flora. Large genomes are particularly associated with Mediterranean geophytes and grasses in which growth is confined to the cool conditions of winter and early spring. We suggest that large genomes have evolved under circumstances in which growth is limited by the effect of low temperature on rates of cell division and are part of a mechanism whereby growth at low temperature is achieved by rapid inflation of large cells formed during a preceding warm dry season. Where moisture supply allows growth to occur in the summer, temporal separation of mitosis and cell expansion confers no advantage and the longer mitotic cycle of large cells is likely to restrict rates of development; here the effect of natural selection has been to reduce cell and genome size.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennett, M. D. Proc. R. Soc. B181, 109–135 (1972).

    ADS  CAS  Google Scholar 

  2. Bennett, M. D. & Smith, J. P. Phil. Trans. R. Soc. B274, 227–274 (1976).

    Article  CAS  Google Scholar 

  3. Cavalier-Smith, T. J. Cell Sci. 34, 247–278 (1978).

    CAS  Google Scholar 

  4. Cavalier-Smith, T. Bio Systems 12, 43–59 (1980).

    Article  CAS  Google Scholar 

  5. Rothfels, K., Sexsmith, E., Heimburger, M. & Krause, M. O. Chromosoma 20, 54–74 (1966).

    Article  Google Scholar 

  6. Chooi, W. Y. Genetics 68, 195–211 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, J. P. & Bennett, M. D. Heredity 35, 231–239 (1975).

    Article  Google Scholar 

  8. Price, H. J. Bot. Rev. 42, 27–52 (1976).

    Article  CAS  Google Scholar 

  9. Jones, R. N. & Brown, L. M. Heredity 36, 91–104 (1976).

    Article  Google Scholar 

  10. Bennett, M. D. Envir. exp. Bot. 16, 93–108 (1976).

    Article  CAS  Google Scholar 

  11. Levin, D. A. & Funderburg, S. W. Am. Nat. 114, 784–795 (1979).

    Article  Google Scholar 

  12. Perring, R. H. & Walters, S. M. Atlas of the British Flora (Nelson, Edinburgh, 1962).

    Google Scholar 

  13. Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P. & Band, S. B. J. Ecol. 65, 759–791 (1977).

    Article  Google Scholar 

  14. Billings, W. D. & Mooney, H. A. Biol. Rev. 43, 481–529 (1968).

    Article  Google Scholar 

  15. Wein, R. W. & Maclean, D. A. Can. J. Bot. 51, 2509–2513 (1973).

    Article  Google Scholar 

  16. Al-Mashhadani, Y. D. thesis, Univ. Sheffield (1979).

  17. Furness, S. B. thesis, Univ. Sheffield (1980).

  18. Haber, A. H. & Luippold, H. J. Pl. Physiol. 35, 168–173 (1960).

    Article  CAS  Google Scholar 

  19. Bradley, M. V. Am. J. Bot. 41, 398–402 (1954).

    Article  Google Scholar 

  20. Van't Hof, J. & Sparrow, A. Proc. natn. Acad. Sci. U.S.A. 49, 897–902 (1963).

    Article  ADS  CAS  Google Scholar 

  21. Commoner, B. Nature 202, 960–968 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Darlington, C. D. Cytology (Churchill, London, 1965).

    Google Scholar 

  23. Bennett, M. D. Proc. R. Soc. B178, 277–299 (1971).

    ADS  CAS  Google Scholar 

  24. Finnegan, D. J., Rubin, G. M., Young, M. W. & Hogness, D. S. Cold Spring Harb. Symp. quant. Biol. 42, 1053–1063 (1977).

    Article  Google Scholar 

  25. Long, E. O. & Dawid, I. B. A. Rev. Biochem. 49, 727–764 (1980).

    Article  CAS  Google Scholar 

  26. Avdulov, J. P. Trudȳ prikl. Bot. Genet. Selek. 44, Suppl. 4, 1–428 (1931).

    Google Scholar 

  27. Hartsema, A. M. Handb. PflPhysiol. 16, 123–167 (1961).

    Google Scholar 

  28. Britten, R. J. & Davidson, E. H. Q. Rev. Biol. 46, 111–133 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grime, J., Mowforth, M. Variation in genome size—an ecological interpretation. Nature 299, 151–153 (1982). https://doi.org/10.1038/299151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing