Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Friday 18 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 297, 79 - 80 (06 May 1982); doi:10.1038/297079a0

Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells

Georges Romey & Michel Lazdunski

Centre de Biochimie du CNRS, Université de Nice, Faculté des Sciences, Parc Valrose, 06034 Nice Cedex, France

Many toxic compounds alter specifically the functioning of the fast sodium conductance that is responsible for the generation of action potentials in neuronal and muscle cells. One important class of these compounds consists of the lipid-soluble toxins, such as veratridine and other ceveratrum alkaloids, batrachotoxin, aconitine, and the diterpenoid grayanotoxins. These molecules are thought to bind to a common receptor site on the Na+ channel1–5, thus inducing a membrane depolarization which can be suppressed by the addition of tetrodotoxin (TTX) or by the removal of Na+ from the incubation medium3. We show here that this family of molecules is not specific for the Na+ channel in neuroblastoma cells. Blockade of the voltage-dependent calcium channel is also observed, either in the toxin concentration range in which the molecules act on the Na+ channel (veratridine, grayanotoxin) or at even lower concentration (batrachotoxin).

------------------

References

1. Narahashi, T. Physiol. Rev. 54, 813−889 (1974). | PubMed | ISI | ChemPort |
2. Albuquerque, E. X. & Daly, J. W. in The Specificity and Action of Animal, Bacterial and Plant Toxins (ed. Cuatrecasas, P.) 299−338 (Chapman & Hall, London, 1976).
3. Ulbricht, W. Ergebn. Physiol. 61, 18−71 (1969). | PubMed | ChemPort |
4. Lazdunski, M. et al. in Neurotransmitters and their Receptors (eds Littauer, U. Z., Dudai, Y., Silman, I., Teichberg, V. I. & Vogel, Z.) 511−529 (Wiley, New York, 1980). | ChemPort |
5. Catterall, W. A. J. biol. Chem. 250, 4053−4059 (1975). | PubMed | ISI | ChemPort |
6. Moolenaar, W. H. & Spector, I. J. Physiol., Lond. 292, 307−323 (1979). | PubMed | ISI | ChemPort |
7. Jacques, Y., Fosset, M. & Lazdunski, M. J. biol. Chem. 253, 7383−7392 (1978). | PubMed | ISI | ChemPort |
8. Jacques, Y., Romey, G., Cavey, M. T., Kartalovski, B. & Lazdunski, M. Biochim. biophys. Acta 600, 882−897 (1980). | Article | PubMed | ISI | ChemPort |
9. Brown, G. B. et al. Cell molec. Neurobiol. 1, 19−40 (1981). | PubMed | ISI | ChemPort |
10. Lee, K. S., Akaike, N. & Brown, A. M. J. gen. Physiol. 71, 489−508 (1978). | Article | PubMed | ISI | ChemPort |



© 1982 Nature Publishing Group
Privacy Policy