Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long terminal repeats of endogenous mouse mammary tumour virus contain a long open reading frame which extends into adjacent sequences

Abstract

The integrated DNA copies (proviruses) of RNA tumour virus genomes are flanked by long terminal repeat (LTR) sequences, which are generated by the duplication of segments present at both ends of the viral RNA1. LTRs vary in length from 330 (ref. 2) to 1,328 (this paper) base pairs (bp). The primary viral transcript starts in the left LTR (L-LTR) and terminates in the right LTR (R-LTR)3. We have now sequenced both LTRs from an inherited (endogenous) mouse mammary tumour virus (MMTV) of the GR strain. This provirus, which is one of five present in the haploid genome of GR mice4, does not produce virus5 and is not identical with the exogenous MMTV of GR mice6. The provirus (GR40) could nevertheless be transcribed and its transcription hormonally regulated after cloning and transfection into mouse L cells7. The LTRs are identical and exhibit the following features: a terminal inverted 6-bp repeat, a Goldberg–Hogness (TATAAA) sequence, sequences which have been implicated in polyadenylation and the termination of transcription, and an open reading frame. The open reading frame of the R-LTR starts at the env/LTR junction and encodes a 36,700-molecular weight (Mr) protein. The open reading frame of the L-LTR extends into the adjacent mouse sequence. A host sequence of 6 bp at the site of integration into the mouse chromosome is directly repeated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilboa, E. Mitra, S. W. Goff, S. & Baltimore, D. Cell 18, 93–100 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Swanstrom, R. DeLorbe, W. J. Bishop, J. M. & Varmus, H. E. Proc. natn. Acad. Sci. U.S.A. 78, 124–128 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Yamamoto, T. de Crombrugghe, B. & Pastan, I. Cell 22, 789–797 (1980).

    Article  Google Scholar 

  4. Groner, B. & Hynes, N. E. J. Virol. 33, 1013–1025 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Michalides, R. van Nie, R. Nusse, R. Hynes, N. E. & Groner, B. Cell 23, 165–173 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Herrlich, P. et al. Nucleic Acids Res. 9, 4981–4995 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hynes, N. E. Kennedy, N. Rahmsdorf, U. & Groner, B. Proc. natn. Acad. Sci. U.S.A. 78, 2038–2042 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Frischauf, A. M. Garoff, H. & Lehrach, H. Nucleic Acids Res. 8, 5541–5549 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maxam, A. L. & Gilbert, W. Meth. Enzym. 65, 499–559 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Messing, J. Crea, R. & Seeburg, P. Nucleic Acids Res. 9, 309–321 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanger, F. Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Majors, J. E. & Varmus, H. E. Nature 289, 253–258 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Donehower, L. A. Huang, A. L. & Hager, G. J. Virol. 37, 226–238 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hishinuma, F. DeBona, P. J. Astin, S. & Skalka, A. M. Cell 23, 155–164 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Calos, M. P. & Miller, J. H. Cell 20, 579–595 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsubo, H. Ohmori, H. & Ohtsubo, E. Cold Spring Harb. Symp. quant. Biol. 43, 1269–1277 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Shimotohno, K. & Temin, H. M. Cold Spring Harb. Symp. quant. Biol. 45, 719–732 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. McClements, W. L. Enquist, L. W. Oskarsson, M. Sullivan, M. & Vande Woude, G. F. J. Virol. 35, 488–497 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shoemaker, C. et al. Cold Spring Harb. Symp. quant. Biol. 45, 711–717 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Czernilofsky, A. B. et al. Nucleic Acids Res. 8, 2967–2984 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peters, G. & Glover, C. C. J. Virol. 35, 31–40 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen, J. C. & Varmus, H. E. Nature 278, 418–423 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Cohen, J. C. Majors, J. E. & Varmus, H. E. J. Virol. 32, 483–496 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Benoist, C. O'Hare, K. Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klemenz, R. Reinhardt, M. & Diggelmann, H. Molec. Biol. Rep. 7, 123–126 (1981).

    Article  CAS  Google Scholar 

  26. Proudfoot, N. J. & Brownlee, G. G. Nature 252, 357–362 (1974).

    Article  ADS  Google Scholar 

  27. Lai, E. C. et al. Cell 18, 829–842 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Donehower, L. A. Fleurdelys, B. & Hager, G. L. J. Virol. (in the press).

  29. Dickson, C. & Peters, G. J. Virol. 37, 36–47 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dickson, C. Smith, R. & Peters, G. Nature 291, 511–513 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Shank, R. S. Cohen, J. C. Varmus, H. E. Yamamoto, K. R. & Ringold, G. Proc. natn. Acad. Sci. U.S.A. 75, 2112–2116 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, N., Knedlitschek, G., Groner, B. et al. Long terminal repeats of endogenous mouse mammary tumour virus contain a long open reading frame which extends into adjacent sequences. Nature 295, 622–624 (1982). https://doi.org/10.1038/295622a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295622a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing