Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes

Abstract

A membrane-bound Ca2+ pump, capable of extruding Ca2+ at a rate of 4−30 × 10−3 mol Ca2+ per l of cells per h in optimal conditions1, enables mammalian erythrocytes to maintain a large transmembrane Ca2+ concentration gradient (10−3M outside compared with 10−6M inside)2. This rate is much greater than the passive Ca2+ influx, estimated3 to be 6−10 × 10−6 mol per l of cells per h. It has been suggested that the apparently large excess capacity of the Ca2+ pump both gives the required Ca2+ sensitivity to a pump incapable of regulating its Ca2+ affinity4 and ensures against Ca2+ toxicity in certain red cell activities5. The results presented here, however, show that circulatory shear stresses enhance the Ca2+ permeability of the membrane, and suggest that greater demands are imposed on the Ca2+ pump in vivo than had been previously thought. We find that the passive permeability to Ca2+ is increased by up to an order of magnitude and the Ca2+-stimulated ATPase activity is strongly enhanced when red cells are sheared at physiological rates in a rotational viscometer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Larsen, F. L., Hinds, T. R. & Vincenzi, F. F. J. Membrane Biol. 41, 361–376 (1978).

    Article  CAS  Google Scholar 

  2. Schatzmann, H. J. J. Physiol., Lond. 235, 551–569 (1973).

    Article  CAS  Google Scholar 

  3. Ferreira, H. G. & Lew, V. L. in Membrane Transport in Red Cells (eds Ellroy, J. C. & Lew, V. L.) 53–91 (Academic, London, (1977).

    Google Scholar 

  4. Lew, V. L. & Ferreira, H. G. Curr. Topics Membranes Transport 10, 217–273 (1978).

    Article  CAS  Google Scholar 

  5. Schatzmann, H. J. Curr. Topics Membranes Transport 6, 126–168 (1975).

    Google Scholar 

  6. Chien, S. in The Red Blood Cell Vol. 2 (ed. Surgenor, D. M.) 1031–1133 (Academic, New York, 1975).

    Book  Google Scholar 

  7. Greig, R. G. & Brooks, D. E. Nature 282, 738–739 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Brooks, D. E. & Trust, T. J. in Microbial Adhesion to Surfaces (eds Berkeley, R. C. W., Lynch, J. M., Melling, J., Rutter, P. R. & Vincent, B.) 513–515 (Society Chemical Industry, London, 1980).

    Google Scholar 

  9. Greig, R. G. & Brooks, D. E. Biochim. biophys. Acta 641, 410–415 (1981).

    Article  CAS  Google Scholar 

  10. Porzig, H. J. Membrane Biol. 2, 324–340 (1970).

    Article  CAS  Google Scholar 

  11. Cameron, B. F. & Smariga, P. E. Biochem. J. 156, 577–583 (1976).

    Article  CAS  Google Scholar 

  12. Schatzmann, H. J. & Vincenzi, F. F. J. Physiol., Lond. 201, 369–395 (1969).

    Article  CAS  Google Scholar 

  13. Quist, E. E. & Roufogalis, B. D. FEBS Lett. 50, 135–139 (1975).

    Article  CAS  Google Scholar 

  14. Sarkadi, B., Szász, I., Gerloczy, A. & Gárdos, G. Biochim. biophys. Acta 464, 93–107 (1977).

    Article  CAS  Google Scholar 

  15. Szász, I., Sarkadi, B., Schubert, A. & Gárdos, G. Biochim. biophys. Acta 512, 331–340 (1978).

    Article  Google Scholar 

  16. Lew, V. L. Biochim. biophys. Acta 233, 827–830 (1971).

    Article  CAS  Google Scholar 

  17. Larsen, F. L., Katz, S. & Roufogalis, B. D. Proc. West. Pharmac. Soc. 23, 361–364 (1980).

    CAS  Google Scholar 

  18. Quist, E. E. Archs Biochem. Biophys. 203, 123–133 (1980).

    Article  CAS  Google Scholar 

  19. Katz, S. Pediat. Res. 12, 1033–1038 (1978).

    Article  CAS  Google Scholar 

  20. Gopinath, R. M. & Vincenzi, F. F. Am. J. Hemat. 7, 303–312 (1979).

    Article  CAS  Google Scholar 

  21. Dixon, E. & Winslow, R. M. Br. J. Haemat. 47, 391–397 (1981).

    Article  CAS  Google Scholar 

  22. Fiske, C. H. & SubbaRow, Y. J. J. biol. Chem. 66, 375–400 (1925).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, F., Katz, S., Roufogalis, B. et al. Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes. Nature 294, 667–668 (1981). https://doi.org/10.1038/294667a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294667a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing