Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state reduction of iron in olivine—planetary and meteoritic evolution

Abstract

Iron–nickel metallic particles have been reported in meteorites1 and lunar2–5 and terrestrial6,7 rocks. The origin of these metallic particles is not unique as they may be formed by (1) condensation from a primordial solar nebula8; (2) crystallization from a melt; and (3) subsolidus reduction reactions under low oxygen or sulphur fugacity. We report here an electron microscopy study of the solid-state microstructural development in olivine single crystals (Fo92) in which half of the iron has been reduced to the metallic state by a gas–solid interaction in the temperature range 950–1,500 °C. The reaction, Fo92→Fo96+metallic Fe(Ni in solid solution)+pyroxene, begins with a homogeneous transformation involving fine-scale metallic precipitates resembling Guinier–Preston zones9. The microstructure develops by the growth of the first-formed precipitates during an Ostwald ripening process9 in which the precipitates located in the dislocation sub-boundaries develop in preference to precipitates in the subgrains. On the other hand, pyroxene is first observed to nucleate heterogeneously at pre-existing dislocations and its coarsening rate is more than an order-of-magnitude faster than that of the metallic phase. Besides the textural similarity of the observed microstructures with that reported for some of the lunar materials2, these results have important implications for the physical models of accretion of terrestrial planets, planetesimals and meteorites10, especially with respect to the distribution of siderophile elements. The rate of reaction observed here places constraints on models for the formation of the Earth's core by segregation of a metallic phase with or without reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wasson, J. T. Meteorites (Springer, Berlin, 1974).

    Book  Google Scholar 

  2. Haggerty, S. E. Proc. 8th Lunar Sci. Conf. 1809–1829 (1977).

  3. Misra, K. M., Walker, B. M. & Taylor, L. A. Proc. 7th Lunar Sci. Conf. 2251–2266 (1976).

  4. Brett, R. Geochim. cosmochim. Acta 40, 997–1004 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Taylor, S. R. Lunar Science: a Post-Apollo View (Pergamon, New York, 1975).

    Google Scholar 

  6. Dick, H. J. B. Earth planet. Sci. Lett. 24, 291–298 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Bassett, W. A., Bird, J. M., Weathers, M. S. & Kohlstedt, D. L. Phys. Earth planet. Inter. 23, 255–261 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Grossman, L. Geochim. cosmochim. Acta 36, 597–619 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Nicholson, R. B. & Davies, G. J. in Structural Characteristics of Materials (ed. Finniston, H. M.) 199–289 (Elsevier, Amsterdam, 1971).

    Google Scholar 

  10. Ringwood, A. E. The Origin of the Earth and Moon (Springer, Heidelberg, 1979).

    Book  Google Scholar 

  11. Duba, A. & Nicholls, I. A. Earth planet. Sci. Lett. 18, 59–64 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Lorimer, G. W. in Electron Microscopy and Microanalysis of Crystalline Materials (ed. Belk, J. A.) 29–55 (Applied Science, London, 1979).

    Google Scholar 

  13. Boland, J. N. Contr. Miner. Petrol. 47, 215–222 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Champness, P. E. & Lorimer, G. W. in Electron Microscopy in Mineralogy (ed. Wenk, H. R.) 174–204 (Springer, Berlin, 1976).

    Book  Google Scholar 

  15. Boland, J. N. in Electron Microscopy, Vol. 1 (eds Brederoo, P. & Boom, G.) 444–451 (7th European Congress E. M. Foundation, Leiden, 1980).

    Google Scholar 

  16. Martin, J. W. & Doherty, R. D. Stability of Microstructure in Metallic Systems, 155–244 (Cambridge University Press, London, 1976).

  17. Buening, D. K. & Buseck, P. R. J. geophys. Res. 78, 6852–6862 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Ashby, M. F. & Verral, R. A. Phil. Trans. R. Soc. A288, 59–93 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Kohlstedt, D. L., Nichols, H. P. K. & Hornack, P. J. geophys. Res. 85, 3122–3130 (1980).

    Article  ADS  Google Scholar 

  20. Liu, L.-G. in The Earth: Its Origin, Structure and Evolution, 177–202 (ed. McElhinny, M. W.) (Academic, New York, 1979).

    Google Scholar 

  21. Arculus, R. J. & Delano, J. W. Geochim. cosmochim. Acta 45, 899–913 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Atkinson, A. & Taylor, R. I. Phil. Mag. A39, 581–595 (1979).

    Article  CAS  Google Scholar 

  23. Blander, M., Fuchs, L. H., Horowitz, C. & Land, R. Geochim. cosmochim. Acta 44, 217–223 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Ruff, L. & Anderson, D. L. Phys. Earth planet. Int. 21, 181–201 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Smith, J. V. Miner. Mag. 43, 1–81 (1979).

    Article  CAS  Google Scholar 

  26. Domenico, P. A. A. Rev. Earth planet. Sci. 5, 287–317 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Elsasser, W. M. in Earth Science and Meteorites (eds Geiss, J. & Goldberg, E.) 1–30 (North Holland, Amsterdam, 1963).

    Google Scholar 

  28. Mao, H. K. & Bell, P. M. Yb Carnegie Instn Wash. 74, 555–559 (1975).

    Google Scholar 

  29. Hofman, A. W. & Magaritz, M. J. geophys. Res. 82, 5432–5440 (1977).

    Article  ADS  Google Scholar 

  30. Wolf, R. & Anders, E. Geochim. cosmochim. Acta 44, 2111–2124 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Bird, J. M. & Bassett, W. A. J. geophys. Res. 85, 5461–5470 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Boland, J. N. Terra Cognita, Spring 1981, 84 (Abstract K1).

  33. Anderson, D. L. J. geophys. Res. (in the press).

  34. El Goresy, A. E., Taylor, L. A. & Ramdohr, P. Proc. 3rd Lunar. Sci. Conf. 333–349 (1972).

  35. McCallister, R. H. & Taylor, L. A. Earth planet. Sci. Lett. 17, 357–364 (1973).

    Article  ADS  CAS  Google Scholar 

  36. Grossman, L. A. Rev. Earth planet. Sci. 8, 559–608 (1980).

    Article  ADS  CAS  Google Scholar 

  37. Nitsan, U. J. geophys. Res. 79, 706–711 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boland, J., Duba, A. Solid-state reduction of iron in olivine—planetary and meteoritic evolution. Nature 294, 142–144 (1981). https://doi.org/10.1038/294142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294142a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing