Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential cleavage of phage λ repressor monomers by recA protease

Abstract

Expression of phage lytic functions in λ lysogens of Escherichia coli is prevented by phage repressor, which binds to specific operator sequences on the prophage DNA. Phage induction accompanies the expression of an entire set of ‘SOS functions’, which occur when host DNA is damaged or DNA synthesis is interrupted. In these conditions, λ repressor is thought to be inactivated by recA protease, thereby leading to expression of phage lytic functions1. We have now characterized the repressor from a λ mutant, inds-1, which, as prophage, is more easily induced than wild-type phage by a weak inducing treatment2. At high concentrations, λinds-1 repressor differs from wild-type repressor in two ways: whereas wild-type repressor forms dimers and becomes relatively resistant to the recA protease, a much greater proportion of λinds-1 repressor remains monomeric and the protein remains sensitive to the protease. These findings support previous indications3 that repressor monomers are the preferred substrate for protease, both in vivo and in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roberts, J. W., Roberts, C. W. & Craig, N. L. Proc. natn. Acad. Sci. U.S.A. 75, 4714–4718 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Horiuchi, T. & Inokuchi, H. J. molec. Biol. 23, 217–224 (1967).

    Article  CAS  Google Scholar 

  3. Phizicky, E. M. & Roberts, J. W. J. molec. Biol. 139, 319–328 (1980).

    Article  CAS  Google Scholar 

  4. Pabo, C. O., Sauer, R. T., Sturtevant, J. M. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 76, 1608–1612 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Sauer, R. T., Pabo, C. O., Meyer, B. J., Ptashne, M. & Backman, K. C. Nature 279, 396–400 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Roberts, J. W. & Roberts, C. W. Proc. natn. Acad. Sci. U.S.A. 72, 147–151 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Bailone, A., Levine, A. & Devoret, R. J. molec. Biol. 131, 553–572 (1979).

    Article  CAS  Google Scholar 

  8. Blanco, M. & Pomes, L. Molec. gen. Genet. 154, 287–292 (1977).

    Article  CAS  Google Scholar 

  9. Pirrotta, V., Chadwick, P. & Ptashne, M. Nature 227, 41–44 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Sauer, R. T. thesis, Harvard Univ. (1979).

  11. Smith, G. R. Virology 64, 544–552 (1975).

    Article  CAS  Google Scholar 

  12. Mount, D. W. Molec. gen. Genet. 145, 165–167 (1976).

    Article  CAS  Google Scholar 

  13. Backman, K. & Ptashne, M. Cell 13, 65–71 (1978).

    Article  CAS  Google Scholar 

  14. Muller-Hill, B. Prog. Biophys. molec. Biol. 30, 227–252 (1975).

    Article  CAS  Google Scholar 

  15. Johnson, A. D., Pabo, C. O. & Sauer, R. T. Meth. Enzm. 65, 839–855 (1980).

    Article  CAS  Google Scholar 

  16. Craig, N. L. & Roberts, J. W. Nature 283, 26–30 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Little, J. W., Edmiston, S. H., Pacelli, L. Z. & Mount, D. W. Proc. natn. Acad. Sci. U.S.A. 77, 3225–3229 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, S., Knoll, B., Little, J. et al. Preferential cleavage of phage λ repressor monomers by recA protease. Nature 294, 182–184 (1981). https://doi.org/10.1038/294182a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294182a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing