Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amorphous structure of metamict minerals observed by TEM

Abstract

Metamict minerals are a special class of materials which were initially crystalline but have become amorphous because of accumulated structural damage caused by the radioactive decay of their constituent U and Th nuclides1–3. Damage from α particles and recoil nuclei may cause dramatic changes in physical, chemical, mechanical and structural properties of materials4–6. Thus, metamict minerals provide a natural example of the potential long-term effects of radiation damage in proposed crystalline radioactive waste forms7, such as the Sandia ceramic waste forms8–10, SYNROC11–13, super-calcine14 or the tailored ceramics15. The determination of the microstructures of metamict materials, therefore, may help to predict long-term radiation effects in crystalline waste forms. This report presents the results of an examination by transmission electron microscopy (TEM) of a wide range of metamict silicate and complex Nb–Ta–Ti oxide minerals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broegger, W. C. Salmonsens Store Illustrerede Konversationslexikon 1, 742–743 (1893).

    Google Scholar 

  2. Graham, J. & Thornber, M. R. Am. Miner. 59, 1047–1050 (1974).

    CAS  Google Scholar 

  3. Ewing, R. C. Am. Miner. 60, 728–733 (1975).

    CAS  Google Scholar 

  4. Pabst, A. Am. Miner. 37, 137–157 (1952).

    CAS  Google Scholar 

  5. Ewing, R. C. & Haaker, R. F. J. Nucl. Chem. Waste Mgmt 1, 51–57 (1980).

    Article  CAS  Google Scholar 

  6. Ewing, R. C. Geochim. cosmochim. Acta 39, 521–530 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Ewing, R. C. Science 192, 1336–1337 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Lynch, R. W., Dosch, R. G., Kenna, B. T., Johnstone, J. K. & Nowak, E. J. Proc. IAEA Symp. on the Management of Radioactive Wastes (IAEA-SM 207/15 Vienna, 1976).

    Google Scholar 

  9. Dosch, R. G. Am. Cer. Soc. Symp. Ser. No. 100, 129–148 (1979).

  10. Dosch, R. G., Hlava, P. F. & Headley, T. J. Scientific Basis for Nuclear Waste Management Vol. 3 (ed. Moore, J.) (Plenum, New York, in the press).

  11. Ringwood, A. E. Safe Disposal of High Level Nuclear Reactor Wastes: A New Strategy (Australian National University Press, 1978).

    Google Scholar 

  12. Oversby, V. M. and Ringwood, A. E. Radioact. Waste Mgmt 1, 289–307 (1981).

    CAS  Google Scholar 

  13. Ringwood, A. E. et al. J. Nucl. Chem. Waste Mgmt (in the press).

  14. McCarthy, G. J. Nucl. Technol. 32, 92–105 (1977).

    Article  CAS  Google Scholar 

  15. Harker, A. B., Jantzen, C. M., Morgan, P. E. & Clark, D. R. in Scientific Basis for Nuclear Waste Management Vol. 3 (ed. Moore, J.) (Plenum, New York, in the press).

  16. Ewing, R. C. Can. Miner. 13, 521–530 (1975).

    Google Scholar 

  17. Holland, H. D. & Gottfried, D. Acta crystallogr 8, 291–300 (1955).

    Article  CAS  Google Scholar 

  18. Christ, C. L., Dwornik, E. J. & Tischler, M. S. Bull. geol. Soc. Am. 65, 1240 (1954).

    Google Scholar 

  19. Bursill, L. A. & McLaren, A. C. Phys. Status Solid. 13, 331–343 (1966).

    Article  ADS  CAS  Google Scholar 

  20. Sommerauer, J. thesis, Eidgenoessischen Technischen Hochschule Zurich (1976).

  21. Headley, T. J., Ewing, R. C. & Haaker, R. F. 39th A. Proc. Electron Microscopy Soc. Am. (ed. Bailey, G. W.) 112–113 (Claitor's, Baton Rouge, 1981).

    Google Scholar 

  22. Yada, K., Tanji, T. & Sunagawa, I. Phys. Chem. Miner. 7, 47–52 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Rudee, M. L. in Electron Microscopy in Mineralogy (ed. Wenk, H.-R.) 476–487 (Springer, Berlin, 1976).

    Book  Google Scholar 

  24. Ehlmann, A. J., Walper, J. L. & Williams, J. Econ. Geol. 59, 1348–1360 (1964).

    Article  CAS  Google Scholar 

  25. Gibson, S. & Ehlmann, A. J. Am. Miner. 55, 288–291 (1970).

    CAS  Google Scholar 

  26. Ewing, R. C. & Ehlmann, A. J. Am. Miner. 58, 545–547 (1973).

    CAS  Google Scholar 

  27. Ewing, R. C. thesis, Stanford Univ. (1974).

  28. Hongslo, T. & Langmyhr, F. J. Norsk geol. Tidsskr. 40, 157–164 (1960).

    CAS  Google Scholar 

  29. Ewing, R. C. Science 184, 561–562 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Headley, T., Ewing, R. & Haaker, R. Amorphous structure of metamict minerals observed by TEM. Nature 293, 449–450 (1981). https://doi.org/10.1038/293449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing