Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An inducible DNA replication–cell division coupling mechanism in E. coli

Abstract

Cell division is a tightly regulated periodic process. In steady-state cultures of Enterobacteriaceae, division takes place at a well defined cell mass1 and is strictly coordinated with DNA replication2. In wild-type Escherichia coli the formation of cells lacking DNA is very rare3, and interruptions of DNA replication arrest cell division4–6. The molecular bases of this replication-division coupling have been elusive but several models have been proposed. It has been suggested, for example, that the termination of a round of DNA replication may trigger a key event required for cell division4–8. A quite different model postulates the existence of a division inhibitor which prevents untimely division and whose synthesis is induced to high levels when DNA replication is perturbed9. The work reported here establishes the existence of the latter type of replication-division coupling in E. coli, and shows that the sfiA gene product is an inducible component of this division inhibition mechanism which is synthesized at high levels after perturbations of DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schaechter, M., Maaløe, O. & Kjeldgaard, N. O. J. gen. Microbiol. 19, 592–606 (1958).

    Article  CAS  Google Scholar 

  2. Cooper, S. & Helmstetter, C. J. molec. Biol. 31, 519–540 (1968).

    Article  CAS  Google Scholar 

  3. Howe, W. E. & Mount, D. W. J. Bact. 124, 1113–1121 (1975).

    CAS  PubMed  Google Scholar 

  4. Helmstetter, C. E. & Pierucci, O. J. Bact. 95, 1627–1633 (1968).

    CAS  PubMed  Google Scholar 

  5. Clark, D. J. J. Bact. 96, 1214–1224 (1968).

    CAS  PubMed  Google Scholar 

  6. Donachie, W. D. J. Bact. 100, 260–268 (1969).

    CAS  PubMed  Google Scholar 

  7. Jones, N. & Donachie, W. Nature new Biol. 243, 100–103 (1973).

    Article  CAS  Google Scholar 

  8. Zaritsky, A. & Pritchard, R. J. Bact. 114, 824–837 (1973).

    CAS  PubMed  Google Scholar 

  9. Witkin, E. M. Proc. natn. Acad. Sci. U.S.A 57, 1275–1279 (1967).

    Article  ADS  CAS  Google Scholar 

  10. Radman, M. in Molecular Mechanisms of Repair of DNA (eds Hanawalt, P. C. & Setlow, R. B. ) 355–367 (Plenum, New York, 1975).

    Book  Google Scholar 

  11. Witkin, E. M. Bact. Rev. 40, 869–907 (1976).

    CAS  PubMed  Google Scholar 

  12. Devoret, R. Biochimie. 60, 1135–1140 (1978).

    Article  CAS  Google Scholar 

  13. George, J., Castellazzi, M. & Buttin, G. Molec. gen. Genet. 140, 309–332 (1975).

    CAS  PubMed  Google Scholar 

  14. McEntee, K. in DNA Repair Mechanisms Vol. 9 (eds Hanawalt, P. C., Friedberg, E. C. & Fox, C. F. ) 349–359 (Academic, New York, 1978).

    Book  Google Scholar 

  15. Huisman, O., D'Ari, R. & George, J. J. Bact. 144, 185–191 (1980).

    CAS  PubMed  Google Scholar 

  16. Casadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 76, 4530–4533 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Huisman, O., D'Ari, R. & George, J. Molec. gen. Genet. 177, 629–636 (1980).

    Article  CAS  Google Scholar 

  18. Castellazzi, M., George, J. & Buttin, G. Molec. gen. Genet. 119, 139–152 (1972).

    Article  CAS  Google Scholar 

  19. Gudas, L. J. J. molec. Biol. 104, 567–587 (1976).

    Article  CAS  Google Scholar 

  20. Mount, D. W., Walker, A. C. & Kosel, C. J. Bact. 121, 1203–1207 (1975).

    CAS  PubMed  Google Scholar 

  21. Kenyon, C. J. & Walker, G. C. Proc. natn. Acad. Sci. USA. 77, 2819–2823 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Gudas, L. J. & Pardee, A. B. Proc. natn. Acad. Sci. U.S.A. 72, 2330–2334 (1975).

    Article  ADS  CAS  Google Scholar 

  23. McPartland, A., Green, L. & Echols, H. Cell. 20, 731–737 (1980).

    Article  CAS  Google Scholar 

  24. Howard-Flanders, P., Simson, E. & Theriot, L. Genetics 49, 237–246 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gayda, R. C., Yamamoto, L. T. & Markovitz, A. J. Bact. 127, 1208–1216 (1976).

    CAS  PubMed  Google Scholar 

  26. Johnson, B. F. Genet. Res. 30, 273–286 (1977).

    Article  CAS  Google Scholar 

  27. Hua, S. & Markovitz, A. J.Bact. 110, 1089–1099 (1972).

    CAS  PubMed  Google Scholar 

  28. Buchanon, C. E., Hua, S., Avni, H. & Markovitz, A. J. Bact. 114, 891–893 (1973).

    Google Scholar 

  29. Gottesman, S. & Zipser, D. J. Bact. 133, 844–851 (1978).

    CAS  PubMed  Google Scholar 

  30. McEntee, K. Proc. natn. Acad. Sci. U.S.A. 74, 5275–5279 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Gudas, L. J. & Mount, D. W. Proc. natn. Acad. Sci. U.S.A 74, 5280–5284 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Emmerson, P. T. & West, S. C. Molec. gen. Genet. 155, 77–85 (1977).

    Article  CAS  Google Scholar 

  33. Roberts, J. W., Roberts, C. W. & Craig, N. L. Proc. natn. Acad. Sci. U.S.A 75, 4714–4718 (1978).

    Article  ADS  CAS  Google Scholar 

  34. Little, J. W., Edmiston, S. H., Pacelli, L. Z. & Mount, D. W. Proc. natn. Acad. Sci. U.S.A 77, 3225–3229 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Miller, J. H. Experiments in Molecular Genetics. (Cold Spring Harbor, New York, 1972).

    Google Scholar 

  36. Kirby, E. P., Ruff, W. L. & Goldthwait, D. J. Bact. 111, 447–453 (1972).

    CAS  PubMed  Google Scholar 

  37. Pardee, A. B., Jacob, F. & Monod, J. J. molec. Biol. 1, 165–178 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisman, O., D'Ari, R. An inducible DNA replication–cell division coupling mechanism in E. coli. Nature 290, 797–799 (1981). https://doi.org/10.1038/290797a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290797a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing