Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromatin fine structure of active and repressed genes

Abstract

Study of the structural organization of chromatin during transcription and replication may reveal important aspects of these processes. At the lowest level of organization, chromatin consists of a repeating subunit, the nucleosome (for reviews see refs 1–3). Electron microscopy indicates that the nucleosomes are arranged helically4–6 or form discrete superbeads7, generating the familiar 250 Å-300-Å fibre8. It has been suggested that this fibre is further folded into loops containing up to several hundred nucleosomes9,10. Despite extensive study, the significance and fate of these nucleosomes remain obscure. We have used here micrococcal nuclease digestion to compare the structures of actively transcribing and inert chromatin of the genes coding for the major heat-shock protein of Drosophila melanogaster. The repressed hsp 70 genes were considerably more resistant to cleavage by micrococcal nuclease than their flanking regions and the bulk of chromatin. The active genes, previously shown to be more sensitive than the repressed genes11–13, are also more susceptible to the nuclease than their 3′-flanking regions and bulk chromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kornberg, R. D. A. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  2. Chambon, P. Cold Spring Harb. Symp. quant. Biol. 42, 1209–1234 (1978).

    Article  CAS  Google Scholar 

  3. McGhee, J. D. & Felsenfeld, G. A. Rev. Biochem. 49, 1115–1156 (1980).

    Article  CAS  Google Scholar 

  4. Filip, D. A., Gilly, C. & Mouriquand, C. Humangentik 30, 155–165 (1975).

    CAS  Google Scholar 

  5. Finch, J. T. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 73, 1897–1901 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Ris, H. & Korenberg, J. in Cell Biology Vol. 2 (eds Prescott, D. M. & Goldstein, L.) 267–361 (Academic, New York, 1979).

    Google Scholar 

  7. Hozier, J., Renz, M. & Nehls, P. Chromosoma 62, 301–317 (1977).

    Article  CAS  Google Scholar 

  8. Ris, H. & Kubai, D. F. A. Rev. Genet. 4, 263–294 (1970).

    Article  CAS  Google Scholar 

  9. Benyajati, C. & Worcel, A. Cell 9, 393–407 (1976).

    Article  CAS  Google Scholar 

  10. Paulson, J. R. & Laemmli, U. K. Cell 12, 817–828 (1977).

    Article  CAS  Google Scholar 

  11. Panel, A. & Cedar, H. Cell 11, 933–940 (1977).

    Article  Google Scholar 

  12. Bellard, M., Gannon, F. & Chambon, P. Cold Spring Harb. Symp. quant. Biol. 42, 779–791 (1978).

    Article  CAS  Google Scholar 

  13. Wu, C., Wong, Y.-C. & Elgin, S. R. C. Cell 16, 807–814 (1979).

    Article  CAS  Google Scholar 

  14. Ashburner, M. & Bonner, J. J. Cell 17, 241–254 (1979).

    Article  CAS  Google Scholar 

  15. Mirault, M.-E., Goldschmidt-Clermont, M., Artavanis-Tasakonas, S. & Schedl, P. Proc. natn. Acad. Sci. U.S.A. 76, 5254–5258 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Lis, J. T., Prestidge, L. & Hogness, D. S. Cell 14, 901–919 (1978).

    Article  CAS  Google Scholar 

  18. Artavanis-Tsakonas, S., Schedl, P., Mirault, M.-E., Moran, L. & Lis, J. Cell 17, 9–18 (1979).

    Article  CAS  Google Scholar 

  19. Levy, A., Frei, E. & Noll, M. Gene 11, 283–290 (1980).

    Article  CAS  Google Scholar 

  20. Wensink, P. C., Finnegan, D. J., Donelson, J. E. & Hogness, D. S. Cell 3, 315–325 (1974).

    Article  CAS  Google Scholar 

  21. Igó-Kemenes, T. & Zachau, H. G. Cold Spring Harb. Symp. quant. Biol. 42, 109–118 (1978).

    Article  Google Scholar 

  22. Weintraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Garel, A. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 73, 3966–3970 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Török, I. & Karch, F. Nucleic Acids Res. 8, 3105–3123 (1980).

    Article  Google Scholar 

  25. Ingolia, T. D., Craig, E. A. & McCarthy, B. J. Cell 21, 669–679 (1980).

    Article  CAS  Google Scholar 

  26. Schedl, P. et al. Cell 14, 921–929 (1978).

    Article  CAS  Google Scholar 

  27. Moran, L. et al. Cell 17, 1–8 (1979).

    Article  CAS  Google Scholar 

  28. Noll, M., Zimmer, S., Engel, A. & Dubochet, J. Nucleic Acids Res. 8, 21–42 (1980).

    Article  CAS  Google Scholar 

  29. Echalier, G. & Ohanessian, A. In Vitro 6, 162–172 (1970).

    Article  CAS  Google Scholar 

  30. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Denhardt, D. T. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

  32. Laskey, R. A. & Mills, A. D. FEBS Lett. 82, 314–316 (1977).

    Article  CAS  Google Scholar 

  33. Philippsen, P., Kramer, R. A. & Davis, R. W. J. molec. Biol. 123, 371–386 (1978).

    Article  CAS  Google Scholar 

  34. Hewish, D. R. & Burgoyne, L. A. Biochem. biophys. Res. Commun. 52, 504–510 (1973).

    Article  CAS  Google Scholar 

  35. McDonell, M. W., Simon, M. N. & Studier, F. W. J. molec. Biol. 110, 119–146 (1977).

    Article  CAS  Google Scholar 

  36. Levy, A. & Noll, M. Experientia 36, 750 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, A., Noll, M. Chromatin fine structure of active and repressed genes. Nature 289, 198–203 (1981). https://doi.org/10.1038/289198a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289198a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing