Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of an Earth-strength magnetic field on electrical activity of pineal cells

Abstract

Although magnetic fields can influence biological systems, including those of man and other vertebrates1–5, no central nervous structure has been identified that might be involved in their detection. From a theoretical point of view, the pineal organ might be such a structure for the following reasons: (1) It is involved in the regulation of circadian rhythms6 and is thus essential for migratory restlessness (‘Zugunruhe’)7. Orientation at that time can be altered by an artificial magnetic field (MF) with a direction differing by 90° from that of the Earth. Circadian rhythms can be inhibited from phase shifting by compensation of the Earth's MF and can be influenced by an artificial MF8. (2) The pineal organ is strongly dependent on its sympathetic innervation6 and the sympatho-adrenergic system as a whole is sensitive to magnetic stimuli9. (3) The pineal organ is a light-sensitive time-keeping organ10,11 and could form part of a combined compass–solar-clock system, which has been postulated for maintaining orientation in birds12. We have therefore investigated the effect of a MF on electrophysiological activity of the guinea pig pineal organ, which is a useful system for such studies on individual cells11,13. We report here that activity was depressed by an induced MF and restored when the MF was inverted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnothy, M. F. (Plenum New York, 1964).

  2. Barnothy, M. F. Vol. 2 (Plenum, New York, 1969).

  3. Markl, H. in Biophysik (eds Hoppe, W., Lohman, W., Markl, H.& Ziegler, H.) (Springer, Berlin, 1977).

    Google Scholar 

  4. Martin, H. & Lindauer, M. Fortschr. Zool. 21, 211–228 (1973).

    CAS  PubMed  Google Scholar 

  5. Martin, H. & Lindauer, M. J. comp. Physiol. 122, 145–187 (1977).

    Article  Google Scholar 

  6. Wurtman, R. J., Axelrod, J. & Kelly, D. E. The Pineal (Academic, New York, 1968).

    Google Scholar 

  7. McMillan, J. P. J. comp. Physiol. 79, 105–112 (1972).

    Article  Google Scholar 

  8. Brown, F. A. & Sciw, K. M. J. interdisciplinary Cycle Res. 9, 137–145 (1978).

    Article  Google Scholar 

  9. Sakharova, S. A. Biol. Nauki 19, 40–44 (1976).

    CAS  Google Scholar 

  10. Binkley, S. A., Riebman, J. B. & Reilly, K. B. Science 202, 1198–1201 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Semm, P. & Vollrath, L. J. neural Transmission 47, 181–190 (1980).

    Article  CAS  Google Scholar 

  12. Walcott, C. J. exp. Biol. 70, 105–123 (1977).

    Google Scholar 

  13. Semm, P. & Vollrath, L. Neurosci. Lett. 12, 93–96 (1979).

    Article  CAS  Google Scholar 

  14. Reiter, R. J. Rev. Physiol. 35, 305–328 (1973).

    Article  CAS  Google Scholar 

  15. Turek, F. W. Science 194, 1441–1443 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Kappers, J. A. Z. Zellforsch. mikrosk. Anat. 52, 163–215 (1960).

    Article  CAS  Google Scholar 

  17. Demmel, U., Höck, A., Kasparek, K. & Feinendegen, L. E. in Nuclear Activation Techniques in the Life Sciences, 193–203 (International Atomic Energy Agency, Vienna, 1979).

    Google Scholar 

  18. Krstić, R. Cell Tissue Res. 174, 129–137 (1976).

    Article  Google Scholar 

  19. Frankel, R. B., Blakemore, R. P. & Wolfe, R. S. Science 203, 1355–1356 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Leask, M. J. M. Nature 267, 144–145 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Collin, J. P. Ciba Fdn Symp. 79–120 (1971).

  22. Moore, R. Y., Heller, A., Wurtman, R. J. & Axelrod, J. Science 155, 220–223 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semm, P., Schneider, T. & Vollrath, L. Effects of an Earth-strength magnetic field on electrical activity of pineal cells. Nature 288, 607–608 (1980). https://doi.org/10.1038/288607a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288607a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing