Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal history, chemical composition and relationship of comets to the origin of life

Abstract

It is generally believed that a comet consists basically of a loose conglomeration of frozen gases with embedded material similar to that found in the carbonaceous chondritic meteorites, and consequently that comets may be nearly pristine samples of the original solar nebula1–5. We show here that thermal processing within comets could have played an important part in determining their present state; in particular, we find that liquid water might have been available in some comets over geologically and biologically significant spans of time. It follows that a cometary origin is not excluded for some thermally metamorphosed meteorites and asteroids, that comets may contain quite complex organic molecules, and that comets may have played a role in the origin and conceivably even in the subsequent evolution of terrestrial life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Whipple, F. L. & Huebner, W. F. A. Rev. Astr. Astrophys. 14, 143–172 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Donn, B., Mumma, M., Jackson, W., A'Hearn, M. & Harrington, R. (eds) The Study of Comets (NASA SP-393, 1976).

  3. Delsemme, A. H. in Comets, Asteroids, and Meteorites (ed. Delsemme, A. H.) 3–13 (University of Toledo Press, 1977).

    Google Scholar 

  4. Brownlee, D. E. in Cosmic Dust (ed. MacDonald, J. A. M.) 295–336 (Wiley, New York, 1978).

    Google Scholar 

  5. Anders, E., Ganapathy, R., Krähenbühl, U. & Morgan, J. W. Moon 8, 3–24 (1973).

    Article  ADS  Google Scholar 

  6. Lewis, J. S. Icarus 15, 174–185 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Whipple, F. L. & Stefanik, R. P. in Nature et Origine des Comètes, 33–52 (University of Liège, 1966).

    Google Scholar 

  8. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Astrophys. J. Lett. 211, L107–L110 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Fish, R. A., Goles, G. G. & Anders, E. Astrophys. J. 132, 243–258 (1960).

    Article  ADS  CAS  Google Scholar 

  10. Wood, J. A. Icarus 6, 1–49 (1967).

    Article  ADS  CAS  Google Scholar 

  11. Roemer, E. in Nature et Origine des Comètes, 23–28 (University of Liège, 1966).

    Google Scholar 

  12. Konopleva, V. P. & Shul'man, L. M. in The Motion, Evolution of Orbits, and Origin of Comets (eds Chebotarev, G. A., Kazimirchak-Polonskaya, E. I. & Marsden, B. G.) 277–282 (Reidel, Dordrecht, 1972).

    Book  Google Scholar 

  13. Sekanina, Z. in The Motion, Evolution of Orbits, and Origin of Comets (eds Chebotarev, G. A., Kazimirchak-Polonskaya, E. I. & Marsden, B. G.) 301–307 (Reidel, Dordrecht, 1972).

    Book  Google Scholar 

  14. Wetherill, G. W. Scient. Am. 240, 54–65 (1979).

    Article  CAS  Google Scholar 

  15. Ashbrook, J. Sky Telesc. 55, 4–5 (1978).

    ADS  Google Scholar 

  16. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Geophys. Res. Lett. 3, 109–112 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Watson, K., Murray, B. C. & Brown, H. Icarus 1, 317–327 (1963).

    Article  ADS  CAS  Google Scholar 

  18. Delsemme, A. H. & Miller, D. C. Planet. Space Sci. 19, 1229–1257 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Ratcliffe, E. H. Phil. Mag. 7, 1197–1203 (1962).

    Article  ADS  CAS  Google Scholar 

  20. Weast, R. C. (ed.) Handbook of Chemistry and Physics (Chemical Rubber Co., Cleveland, 1970).

  21. Keihm, S. J. & Langseth, M. G. Icarus 24, 211–230 (1975).

    Article  ADS  Google Scholar 

  22. Schloerb, F. P., Muhleman, D. O. & Berge, G. L. Icarus 29, 329–341 (1976).

    Article  ADS  Google Scholar 

  23. Wood, J. A. in Asteroids (University of Arizona Press, Tuscon, in the press).

  24. Anders, E., Hayatsu, R. & Studier, M. H. Science 182, 781–790 (1973).

    Article  ADS  CAS  Google Scholar 

  25. Wetherill, G. W. A. Rev. Earth planet. Sci. 2, 303–332 (1974).

    Article  ADS  Google Scholar 

  26. Chapman, C. R., Williams, J. G. & Hartmann, W. K. A. Rev. Astr. Astrophys. 16, 33–75 (1978).

    Article  ADS  Google Scholar 

  27. Anders, E. Icarus 24, 363–371 (1975).

    Article  ADS  Google Scholar 

  28. Öpik, E. J. Adv. Astr. Astrophys. 2, 219–262 (1963).

    Article  Google Scholar 

  29. Wilkening, L. L. in Asteroids (University of Arizona Press, Tuscon, in the press).

  30. Sekanina, Z. in The Study of Comets (eds Donn, B., Mumma, M., Jackson, W., A'Hearn, M. & Harrington, R.) 537–585 (NASA SP-393, 1976).

    Google Scholar 

  31. Hayatsu, R., Studier, M. H., Matsuoka, S. & Anders, E. Geochim. cosmochim. Acta 36, 555–571 (1972).

    Article  ADS  CAS  Google Scholar 

  32. Orgel, L. E. The Origins of Life (Wiley, New York, 1973).

    Google Scholar 

  33. Stoks, P. G. & Schwartz, A. W. Nature 282, 709–710 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Draganić, Z., Draganić, I., Shimoyama, A. & Ponnamperuma, C. in Origin of Life (ed. Noda, H.) 129–134 (Center for Academic Publications, Japan, 1978).

    Google Scholar 

  35. Paecht-Horowitz, M. Origins of Life 7, 369–381 (1976).

    Google Scholar 

  36. Schidlowski, M. in Origin of Life (ed. Noda, H.) 3–20 (Center for Academic Publications, Japan, 1978).

    Google Scholar 

  37. Anders, E. Ann. N. Y. Acad. Sci. 108, 514–533 (1963).

    Article  ADS  CAS  Google Scholar 

  38. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  39. Oort, J. H. Bull. astr. Insts Netherlands 11, 91–110 (1950).

    ADS  Google Scholar 

  40. Anders, E. in Physical Studies of Minor Planets (ed. Gehrels, T.) 429–446 (NASA SP-267, 1971).

    Google Scholar 

  41. Whipple, F. L. Proc. natn. Acad. Sci. U.S.A. 37, 19–30 (1951).

    Article  ADS  CAS  Google Scholar 

  42. Hughes, D. W. in Cosmic Dust (ed. MacDonald, J. A. M.) Ch. 3 (Wiley, New York, 1978).

    Google Scholar 

  43. Hoyle, F. & Wickramasinghe, C. New Scient. 76, 402–404 (1977).

    CAS  Google Scholar 

  44. Hoyle, F. Mercury 7, 2–7 (1978).

    ADS  Google Scholar 

  45. Agol, V. I. Origins of Life 7, 119–132 (1976).

    Google Scholar 

  46. Diener, T. O. A. Rev. Microbiol. 28, 23–39 (1974).

    Article  CAS  Google Scholar 

  47. Semancik, J. S., Conejero, V. & Gerhart, J. Virology 80, 218–221 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, W., Leschine, S. & Schloerb, F. Thermal history, chemical composition and relationship of comets to the origin of life. Nature 283, 748–749 (1980). https://doi.org/10.1038/283748a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283748a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing