Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fossil charcoal as evidence of past atmospheric composition

Abstract

The presence of charcoal in the geological record offers a new approach to assessing oxygen levels in palaeoatmospheres. Charcoal is formed by the incomplete combustion of woody tissues. The combustion of wood is supported by the generation of the combustible gases carbon monoxide and methane during the pyrolysis process. As the combustion ranges of these gases are restricted with decreasing oxygen availability to a level below which no combustion will occur, the production of charcoal and its appearance in the geological column constitute a record of changing oxygen availability through time. We show here that the occurrence of charcoal in rocks from the Lower Carboniferous onwards suggests that atmospheric oxygen never fell below 0.3 of present atmospheric level (PAL) during this time. Detrital charcoal formed by forest fire must have contributed an appreciable fraction to inert carbonaceous matter in sediments (kerogen) during post-Devonian time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Komarek, E. V. Proc. a. Tall Timbers Fire Ecol. Conf. 8, 169–197 (1968).

    Google Scholar 

  2. Komarek, E. V. in Fire and Ecosystems (eds Koslowski, T. T. & Ahlgren, C. E.) 251–277 (Academic, New York, 1974).

    Book  Google Scholar 

  3. Cohen, A. D. Miami geol. Soc. Mem. 2, 213–218 (1974).

    Google Scholar 

  4. Hollick, A. Proc. Staten Isl. Ass. Arts Sci. 21–23 (1906).

  5. Chaloner, W. G. & Sheerin, A. Special Papers in Palaeontology 23, 145–161 (1979).

    Google Scholar 

  6. Banks, H. P. Evolution and Plants of the Past (Macmillan, London, 1970).

    Book  Google Scholar 

  7. Stopes, M. C. Fuel 14, 4–13 (1935).

    Google Scholar 

  8. Stopes, M. C., Proc. R. Soc. B 90, 470–487 (1919).

    Article  ADS  CAS  Google Scholar 

  9. Alvin, K. L. Palaeontology 17, 587–598 (1974).

    Google Scholar 

  10. Hollick, A. & Jeffrey, E. C. Mem. N. Y. Bot. Gdn 3 (1909).

  11. McGinnes, E. A., Szopa, P. S. & Phelps, J. E. Scanning Electron Microscopy/1974 469–476 (IIT Research Institute, 1974).

    Google Scholar 

  12. Hickling, H. G. A. & Marshall, C. E. Trans. Instn Min. Engng 84, 13–23 (1932).

    Google Scholar 

  13. Beall, F. C. & Eickner, H. W. U.S.D.A. Forest Res. Pap. 130 (1970).

  14. Komarek, E. V. Proc. a. Tall Timbers Fire Ecol. Conf. 12, 219–240 (1972).

    Google Scholar 

  15. Brown, A. A. & Davis, K. P. Forest Fire: Control and Use (McGraw-Hill, New York, 1973).

    Google Scholar 

  16. Komarek, E. V. Proc. a. Tall Timbers Fire Ecol. Conf. 3, 139–183 (1964).

    Google Scholar 

  17. Komarek, E. V. Proc. a. Tall Timbers Fire Ecol. Conf. 11, 473–511 (1971).

    Google Scholar 

  18. Frondel, C. Dana's System of Mineralogy Vol. 3 (Wiley, New York, 1962).

    Google Scholar 

  19. Coward, H. F. & Jones, G. W. Bull. U. S. Bur. Mines 503 (1952).

  20. Towe, K. M. Nature 274, 657–661 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Berkner, L. V. & Marshall, L. C. Proc. natn. Acad. Sci. 53, 1215–1226 (1965),

    Article  ADS  CAS  Google Scholar 

  22. Tappan, H. Palaeogeogr., Palaeoclimatol., Palaeoecol. 4, 187–210 (1968).

    Article  CAS  Google Scholar 

  23. I. C. C. P. International Handbook of Coal Petrography (CNRS, Paris, 1963).

  24. Harris, T. M. Meddr Grønland 68, 45–147 (1926).

    Google Scholar 

  25. Harris, T. M. Proc. R. Soc. B147, 289–308 (1957).

    ADS  CAS  Google Scholar 

  26. Harris, T. M. J. Ecol. 46, 447–453 (1958).

    Article  Google Scholar 

  27. Cloud, P. Palaeobiology 2, 351–387 (1976).

    Article  CAS  Google Scholar 

  28. Scott, A. C. & Collinson, M. E., in Scanning Electron Microscopy in the Study of Sediments (ed. Whally, B.) 137–167 (Geo-Abstr., Norwich, 1978).

    Google Scholar 

  29. Warg, J. B. & Traverse, A. Geosci. Man 7, 39–46 (1973).

    Article  Google Scholar 

  30. Brooks, J. & Shaw, G. Origin and Development of Living Systems (Academic, London, 1973).

    Google Scholar 

  31. Smith, D. M., Griffin, J. J. & Goldberg, E. D. Nature 241, 268–270 (1973).

    Article  ADS  CAS  Google Scholar 

  32. Herring, J. R. thesis, Univ. California (1977).

  33. Burgess, J. D. Spec. Pap. geol. Soc. Am. 153, 19–30 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cope, M., Chaloner, W. Fossil charcoal as evidence of past atmospheric composition. Nature 283, 647–649 (1980). https://doi.org/10.1038/283647a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283647a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing