Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 20 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters
Nature 282, 864 - 869 (20 December 1979); doi:10.1038/282864a0

Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9

N. Kirby Alton & Daniel Vapnek

Department of Molecular and Population Genetics, University of Georgia, Athens, Georgia 30602

The transposable genetic element Tn9 consists of two direct repeats of the insertion sequence IS1 flanking a region of 1,102 base pairs which determines chloramphenicol resistance1,2. Transposition of Tn9 leads to the duplication of a 9-base pair sequence which preexists at the site of insertion. One copy of this sequence is found at each end of the inserted element3. The chloramphenicol resistance determined by TnP, and by various other R plasmids, is due to the synthesis of the enzyme chloramphenicol acetyl transferase (CAT)4,5. This enzyme catalyses the formation of acetylated derivatives of chloramphenicol which are inactive as inhibitors of protein synthesis5. By using the chain termination technique of DNA sequencing, we have now determined the nucleotide sequence of the 1,102 base pair region between the directly repeated IS1 sequences in the bacterial transposon Tn9 (encoding chloramphenicol resistance). The amino acid sequence of CAT predicted from the nucleotide sequence is identical to that determined by Shaw and coworkers6. An analysis of the sequence suggests that the internal 1,102 base pair region is not directly involved in transposition.

------------------

References

1. Chow, L. T. & Bukhari, A. I. in DNA, Insertion Elements, Plasmids and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.) 295–306 (Cold Spring Harbor Laboratory, New York, 1977).
2. MacHattie, L. A. & Jackowski, J. B. in DNA, Insertion Elements, Plasmids and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.) 219–228 (Cold Spring Harbor Laboratory, New York, 1977).
3. Johnsrud, L., Calos, M. P. & Miller, J. H. Cell 15, 1209–1219 (1978).
4. Shaw, W. V. & Brodsky, R. F. J. Bact. 95, 28–36 (1968).
5. Shaw, W. V. J. biol. Chem. 242, 687–693 (1967).
6. Shaw, W. V. et al. Nature 282, 870–872 (1979).
7. Iida, S., Meyer, J. & Arber, W. Plasmid 1, 357–365 (1978).
8. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
9. Smith, A. J. H. Nucleic Acids Res. 6, 831–848 (1979).
10. Messing, J., Gronenborn, B., Muller-Hill, B. & Hofschneider, P. H. Proc. natn. Acad. Sci. U.S.A. 74, 3642–3646 (1977).
11. Marvin, D. A. & Hohn, B. Bact. Rev. 33, 172–209 (1969).
12. Gronenborn, B. & Messing, J. Nature 272, 375–377 (1978).
13. Ray, D. S. & Kook, K. Gene 4, 109–119 (1978).
14. Barnes, W. M. Gene 5, 127–139 (1979).
15. Ohtsubo, H. & Ohtsubo, E. Proc. natn. Acad. Sci. U.S.A. 75, 615–619 (1978).
16. Johnsrud, L. Molec. gen. Genet. 169, 213–218 (1979).
17. Bolivar, F. Gene 4, 121–136 (1978).
18. Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).
19. Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).
20. Steitz, J. A. & Jakes, K. Proc. natn. Acad. Sci. U.S.A. 72, 4734–4738 (1975).
21. Godson, G. N., Barrell, B. G., Staden, R. & Fiddes, J. C. Nature 276, 236–247 (1978).
22. Steitz, J. A. in Biological Regulation and Control (ed. Goldberger, R.) (Plenum, New York, in the press).
23. Harwood, J. & Smith, D. H. Biochem. biophys. Res. Commun. 42, 57–62 (1971).
24. deCrombrugghe, B., Pastan, I., Shaw, W. V. & Rosner, J. L. Nature new Biol. 241, 237–239 (1973).
25. Reznikoff, W. S. & Abelson, J. N. in The Operon (eds Miller, J. H. & Reznikoff, W. S.) 221–243 (Cold Spring Harbor Laboratory, New York, 1978).
26. deCrombrugghe, B. & Pastan, I. in The Operon (eds Miller, J. H. & Reznikoff, W. S.) 303–324 (Cold Spring Harbor Laboratory, New York, 1978).
27. Musso, R. E., Dilauro, R., Adhya, S. & deCrombrugghe, B. Cell 12, 847–854 (1977).
28. Greenfield, L., Boone, T. & Wilcox, G. Proc. natn. Acad. Sci. U.S.A. 75, 4724–4728 (1978).
29. Pribnow, D. Proc. natn. Acad. Sci. U.S.A. 72, 784–788 (1975).
30. Gilbert, W. in RNA Polymerase (eds Losick, R. & Chamberlin, M.) 193–205 (Cold Spring Harbor Laboratory, New York, 1976).
31. Adhya, S. & Gottesman, M. A. Rev. Biochem. 47, 967–996 (1978).
32. Arber, W. et al. Cold Spring Harb. Symp. quant. Biol. 43, 1197–1208 (1978).
33. Davies, J. & Smith, D. I. A. Rev. Microbiol. 34, 469–518 (1978).
34. So, M., Heffron, F. & McCarthy, B. J. Nature 277, 453–456 (1979).
35. Heffron, F., Bedinger, P., Champoux, J. & Falkow, S. in DNA, Insertion Elements, Plasmids and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.) 161–167 (Cold Spring Harbor Laboratory, New York, 1977).
36. Alton, N. K. & Vapnek, D. Plasmid 2, 366–376 (1979).
37. Alton, N. K. & Vapnek, D. Plasmid 1, 388–404 (1978).
38. Smith, H. O. & Birnsteil, M. L. Nucleic Acids Res. 3, 2387–2398 (1976).
39. Yajko, D. M. & Weis, B. Proc. natn. Acad. Sci. U.S.A. 72, 688–692 (1975).
40. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).
41. Sanger, F. & Coulson, A. R. FEBS Lett. 87, 107–110 (1978).



© 1979 Nature Publishing Group
Privacy Policy