Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Friday 18 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters
Nature 280, 668 - 671 (23 August 1979); doi:10.1038/280668a0

Impact of CO2 on cooling of snow and water surfaces

BHASKAR CHOUDHURY* & GEORGE KUKLA

*Computer Sciences Corporation, Silver Spring, Maryland 20910
Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964

THE levels of CO2 in the atmosphere are being increased by the burning of fossil fuels and reduction of biomass1–3. It has been calculated that the increase in CO2 levels should lead to global warming because of increased absorption by the atmosphere of terrestrial longwave radiation in the far IR (>5 μm)4–7. From model computations, CO2 is expected to produce the largest climatic effect in high latitudes by reducing the size of ice and snow fields4. We present here computations of spectral radiative transfer and scattering within a snow pack and water. The results suggest that CO2 significantly reduces the shortwave energy absorbed by the surface of snow and water. The energy deficit, when not compensated by downward atmospheric radiation, may delay the recrystallisation of snow and dissipation of pack-ice and result in a cooling rather than a warming effect.

------------------

References

1. Revelle, R. & Suess, H. Tellus 9, 18–27 (1957).
2. Keeling, C. D. et al. Tellus 28, 538–551 (1976).
3. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelman, A. Tellus 27, 168–192 (1975).
4. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 32, 3–15 (1975).
5. Sellers, W. D. J. appl. Meteor. 13, 831–833 (1974).
6. Broecker, W. S. Science 189, 460–463 (1975).
7. Kellogg, W. W. Tech. Notes Wld Met. Org. No. 156 (1977).
8. Untersteiner, N. Arch. Met. Geophys. Bioklim., A12, 151–182 (1961).
9. Bilello, M. A., Bates, R. E. & Riley, J. NASA Tech. Rep. 230, 33 p. (1970).
10. Ambach, W. Untersuchungen des Energiehaushaltes und des freien Wassergehaltes beim Abbau der winterlichen Schneedecke (1965).
11. Lyzenga, D. R. Icarus 19, 240–243 (1973).
12. Hansen, J. E. & Travis, L. D. Space Sci. Rev. 16, 527–610 (1974).
13. Choudhury, B. J. & Chang, A. T. C. NASA, Techn. Mem. TM 79639 (1978).
14. O'Brien, H. S. & Munis, R. H. NASA SP-391 (1975).
15. Joseph, J. H., Wiscombe, W. J. & Weinman, J. A. J. atmos. Sci. 33, 2452–2459 (1976).
16. Ivanoff, A. in Proc. NATO Advanced Study Institute—Modeling and Prediction of the Upper Layers of the Ocean (1975). (ed. Kraus, E.B.) 47–71 (Pergamon, New York, 1977).
17. Pfund, A. H. J. Opt. Soc. Am. 29, 56–58 (1939).
18. Keeling, C. D. & Bacastow, R. B. in Energy and Climate 72–95 (National Academy of Sciences, Washington, D.C. 1977).
19. McLatchie, R. A. et al. USAF Cambridge Research Laboratory Tech. Rep. 73 00 96 (1973).
20. Bo-Leckner, R. Solar Energy 20, 143–150 (1978).
21. Portman, D. J. & Ryznar, E. US Army Snow Ice and Permafrost Research Establishment Res. Rep. 74 (1961).
22. Chernigovskii, N. T. in Soviet Data on the Arctic Heat Budget and its Climatic Influence (eds Fletcher, J. O., Keller, B. & Olenicoff, S. M.) 151–173 (Rand Corporation Memorandum RM-5003-PR, 1971).
23. Kojima, K., Kobayashi, D., Kobayashi, S., Naruse, R. & Ishikawa, N. Low Temperature Science A28 (Data Rep., 1970).
24. Weaver, R. L., Barry, R. G. & Jacobs, J. D. Proc. 3rd int. Conf. on Port and Ocean Engineering under Arctic Conditions 1, 455–467 (1975).
25. Kukla, G. J. et al. Nature 270, 573–580 (1977).
26. Kukla, G. & Gavin, J. Proc. Riederalp Workshop (1978), IAHS–AISH Publ. no. 126, 249–258 (1979).
27. Ackerman, T. P. Tellus 31, 115–123 (1979).



© 1979 Nature Publishing Group
Privacy Policy