Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermodynamic theory of size dependence of melting temperature in metals

Abstract

The way that small particles melt is a crucial clement in the construction of a thermodynamic treatment of the relation between particle size and melting temperature. There are indications that melting is initiated at the surface and that the solid–liquid interface sweeps rapidly through the solid at the melting temperature. The formal and physical elements of the indicated nucleation and growth criterion for melting are discussed and the existence of upper and lower limits on the melting temperature is outlined. Theoretical predictions show satisfactory agreement with experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Couchman, P. R. thesis. Univ. Virginia (1975–1976).

  2. Takagi, M. J. phys. Soc., Japan 9, 359–363 (1954).

    Article  ADS  Google Scholar 

  3. Blackman, M. & Curzon, A. E. in Structure and Properties of Thin Films (eds Neugebauer, C. A., Newkirk, J. B. & Vermilyea, D. A.) 217–222 (Wiley, New York, 1959).

    Google Scholar 

  4. Curzon, A. E. thesis, Imperial College, Univ. London (1959).

  5. Wronski, C. R. M. thesis, Imperial College, Univ. London (1963).

  6. Wronski, C. R. M. Br. J. appl. Phys. 18, 1731–1737 (1967).

    Article  CAS  ADS  Google Scholar 

  7. Coombes, C. J. thesis, Imperial College, Univ. London (1970).

  8. Coombes, C. J. J. Phys. F 2, 441–448 (1972).

    Article  CAS  ADS  Google Scholar 

  9. Sambles, J. R. thesis, Imperial College, Univ. London (1970).

  10. Sambles, J. R. Proc. R. Soc. Lond. A 324, 339–351 (1971).

    CAS  ADS  Google Scholar 

  11. Berman, R. P. & Curzon, A. E. Can. J. Phys. 52, 923–929 (1974).

    Article  CAS  ADS  Google Scholar 

  12. Gladkich, N. D., Niedermayer, R. & Spiegel, K. Phys. slat. Solid. 15, 181–192 (1966).

    Article  CAS  ADS  Google Scholar 

  13. Pócza, J. F., Barna, A. & Barna, P. B. J. Vac. sci. Tech. 6, 472–475 (1969).

    Article  ADS  Google Scholar 

  14. Stowell, M. J., Law, T. J. & Smart, J. Proc. R. Soc. Lond. A318, 231–241 (1970).

    CAS  ADS  Google Scholar 

  15. Peppiatt, S. J. & Sambles, J. R. Proc. R. Soc. Lond. A345, 387–399 (1975).

    CAS  ADS  Google Scholar 

  16. Buffat, Ph. & Borel, J.-P. Phys. Rev. A13, 2287–2298 (1976).

    Article  CAS  ADS  Google Scholar 

  17. Pawlow, P. Z. phys. Chem. 65, 1–35; 545–548 (1909).

    Article  CAS  Google Scholar 

  18. Rie, E. Z. phys. Chem. 104, 354–362 (1923).

    CAS  Google Scholar 

  19. Reiss, H. & Wilson, I. B. J. Colloid Sci. 3, 551–561 (1948).

    Article  CAS  Google Scholar 

  20. Defay, R., Prigogine, I., Bellemans, A. & Everett, D. H. Surface Tension and Adsorption 244–251 (Longmans Green, 1966).

    Google Scholar 

  21. Hanszen, K.-J. Z. Phys. 157, 523–553 (1960).

    Article  CAS  ADS  Google Scholar 

  22. Peppiatt, S. J. Proc. R. Soc. Lond. A345, 401–412 (1975).

    CAS  ADS  Google Scholar 

  23. Christian, J. W. The Theory of Transformations in Metals and Alloys (Pergamon, New York, 1965).

    Google Scholar 

  24. Domb, C. II Nuovo Cimento, Suppl Series 10, 9, 9–26 (1958).

    Article  CAS  ADS  Google Scholar 

  25. McKinney, J. T., Jones, E. R. & Webb, M. B. Phys. Rev. 160, 523–530 (1967).

    Article  CAS  ADS  Google Scholar 

  26. Lander, J. J. Progress in Solid Stale Chemistry 2 (ed Reiss. H.) (Pergamon, New York, 1965).

    Google Scholar 

  27. Goodman, R. M. & Somorjai, G. A. J. chem. Phys. 52, 6325–6335 (1970).

    Article  CAS  ADS  Google Scholar 

  28. Klaestrup-Kristensen, J. & Cotterill, R. M. J. Physics of Non-Equilibrium Systems: Fluctuations, Instabilities and Phase Transitions (ed Riste, T.) (Leinden, Nordhoff, 1975).

    Google Scholar 

  29. Kristensen, W. D., Jensen, E. J. & Cotterill, R. M. J. J. de Physique, Colloque C2, suppl. no 4, 36, C2–C21 (1975).

    Google Scholar 

  30. Briant, C. L. & Burton, J. J. J. chem. Phys. 63, 2045–2058 (1975).

    Article  CAS  ADS  Google Scholar 

  31. Cotterill, R. M. J. Phil. Mag. 32, 1283–1288 (1975).

    Article  CAS  ADS  Google Scholar 

  32. Linford, R. G. Solid State Surface Science 2 (ed. Green, M.) (Dekker, New York, 1973).

    Google Scholar 

  33. Couchman, P. R. & Everett, D. H. J. eleclroanalyt. Chem. 67, 382–386 (1967).

    Article  Google Scholar 

  34. Hill, T. L. Thermodynamics of Small Systems. Part 1, 114–132 (Benjamin, New York, 1963).

    Google Scholar 

  35. Christian, J. W. The Theory of Transformations in Metalsand Alloys 2nd edn, Part I (Pergamon, New York, 1975).

    Google Scholar 

  36. Stowell, M. J. Phil Mag. 22, 1–6 (1970).

    Article  ADS  Google Scholar 

  37. Nash, G. E. & Glicksman, M. E. Phil. Mag. 24, 577–592 (1971).

    Article  CAS  ADS  Google Scholar 

  38. Tammann, G. Zeit. anorg. allg. Chem. 110, 166 (1920).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couchman, P., Jesser, W. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977). https://doi.org/10.1038/269481a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269481a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing