Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Propranolol increases binding of thyrotropin to thyroid membranes

Abstract

β-ADRENERGIC antagonists such as propranolol possess two pharmacologically relevant properties—β-adrenergic blockade is observed at relatively low concentrations, whilst at higher concentrations they are effective membrane stabilising agents1,2. The latter property which, unlike β-adrenergic antagonism is non-stereospecific, is also described as local anaesthetic or quinidine like activity and it possibly accounts at least in part, for the anti-arrhythmic properties of propranolol—local anaesthetics and quinidine also showing anti-arrhythmic activity3–5. A wide variety of effects have been associated with local anaesthetic activity1, but as yet there is no unifying explanation of the mechanism of action. We have investigated the effect of propranolol, acting in its capacity as a local anaesthetic, on a hormone receptor adenylate cyclase system which might be expected to be sensitive to membrane perturbation by local anaesthetics, and reported inhibition of thyrotropin (TSH) stimulation of adenylate cyclase in thyroid plasma membranes6. We present here a study of the consequence of local anaesthetic activity on binding of the hormone to membrane-associated receptors, and in this respect contrast the local anaesthetic activity of propranolol with that of local anaesthetics such as xylocaine or procaine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seeman, P. Pharmac. Rev. 24, 583–655 (1972).

    CAS  Google Scholar 

  2. Roth, S. & Seeman, P. Nature new Biol. 231, 284–285 (1971).

    Article  CAS  Google Scholar 

  3. Howe, R. & Shanks, R. G. Nature 210, 1336–1338 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Vaughan-Williams, E. M. Am. J. Cardiol. 18, 399–408 (1966).

    Article  Google Scholar 

  5. Barrett, A. M. & Cullum, V. Br. J. Pharmac. Chemother. 34, 43–55 (1968).

    Article  CAS  Google Scholar 

  6. Marshall, N. J., von Borcke, S. & Malan, P. G. Endocrinology 96, 1513–1519 (1975).

    Article  CAS  Google Scholar 

  7. Marshall, N. J. in: Eukaryotic Cell Function and Growth, Regulation ny Intracellular Cyclic Nucleotides (eds Dumont, J. E., Brown, B. L. & Marshall, N. J.) 125–154. (Plenum, New York, 1976).

    Book  Google Scholar 

  8. Smith, B. R. & Hall, R. Lancet ii, 427–430 (1974).

    Article  Google Scholar 

  9. Marshall, N. J., Von Borcke, S. & Ekins, R. P. Nature 261, 603–604 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Brown, B. L., Albano, J. D. M., Ekins, R. P., Sgherzi, M. A. & Tampion, W. Biochem. J. 121, 561–562 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh, B. N. & Vaughan-Williams, E. M. J. Pharmac. Chemother. 38, 749–757 (1970).

    CAS  Google Scholar 

  12. Hellenbrecht, D., Lemmer, B., Wiethold, G. & Grobecker, H. Naunyn-Schmiedbergs Arch. exp. Path. Pharmak, 277, 211–226 (1973).

    Article  CAS  Google Scholar 

  13. Ablad, B. et al. Acta pharmac. tox. 36, Supp. V, 7–23 (1975).

    Article  CAS  Google Scholar 

  14. Moore, W. V. & Wolff, J. J. biol. Chem. 249, 6255–6263 (1974).

    CAS  PubMed  Google Scholar 

  15. Bashford, C. L., Harrison, S. J., Radda, G. R. & Mehdi, Q. Biochem. J. 146, 473–479 (1975).

    Article  CAS  Google Scholar 

  16. Yamashita, K. and Field, J. B. Biochim. biophys. Acta 304, 686–692 (1973).

    Article  CAS  Google Scholar 

  17. Allan, D. & Michell, R. H. Biochem. J. 148, 471–478 (1975).

    Article  CAS  Google Scholar 

  18. Levey, G. S., Roth, J. & Pastan, I. Endocrinology 84, 1009–1015 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MARSHALL, N., VON BORCKE, S., FLORIN-CHRISTENSEN, A. et al. Propranolol increases binding of thyrotropin to thyroid membranes. Nature 268, 58–60 (1977). https://doi.org/10.1038/268058a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing