Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Yes, Kakangari is a unique chondrite

Abstract

THE Kakangari chondrite seems to be the only representative so far recognised of a new class of chondrites. Mason and Wiik1 noted a similarity between Kakangari and Mokoia (C3(V)) in bulk chemical composition when expressed on a volatile-free basis, but pointed out that the higher metal content of Kakangari suggests a relationship between it and Renazzo (C2). Recognising that Renazzo contains much less troilite and much more FeO than Kakangari, however, they concluded that Kakangari was a new type of carbonaceous chondrite, more reduced than the others. Graham and Hutchison2 emphasised the chemical similarity between Kakangari and the ordinary chondrites, apart from its higher S content, and posed the question, β€œis Kakangari a unique chondrite?”. Using the data of Mason and Wiik1 as well as their own electron microprobe data, they noted that Kakangari is closer in total Fe content to the L- than the H- group chondrites but that its oxidation state lies between those of the H- and E- chondrites. Clayton et al.3,4 were able to distinguish Kakangari from the ordinary chondrites on the basis of oxygen isotopes. On a three-isotope diagram, Kakangari plots with the anomalous stony-iron meteorites Bencubbin and Weatherford along an extrapolation of the apparent mass fractionation line defined by the low-temperature hydrous silicate phases of three C2 chondrites. We have now analysed a 17.1-mg piece of Kakangari for 20 elements and can answer Graham and Hutchison's question in the affirmative.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mason, B., and Wiik, H. B., Am. Mus. Novit., 2272, (1966).

  2. Graham, A. L., and Hutchison, R., Nature, 251, 128–129 (1974).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  3. Clayton, R. N., Onuma, N., and Mayeda, T. K., Earth planet. Sci. Lett., 30, 10–18 (1976).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  4. Clayton, R. N., Mayeda, T. K., and Davis, A. M., in Lunar Science VII, 160–162 (Lunar Science Institute, Houston, 1976).

    Google ScholarΒ 

  5. Grossman, L., and Ganapathy, R., in Proc. 6th Lunar Sci. Conf. (edit. by Merrill, R. B.), 1729–1736 (Pergamon, New York, 1975).

    Google ScholarΒ 

  6. Grossman, L., and Ganapathy, R., Geochim. Cosmochim. Acta, 40, 331–344 (1976).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  7. Perlman, I., and Asaro, F., Archaeometry, 11, 21–52 (1969).

    ArticleΒ  CASΒ  Google ScholarΒ 

  8. Perlman, I., and Asaro, F., in Science and Archaeology (edit. by Brill, R. H.), 182–195 (MIT, Cambridge, Massachusetts, 1971).

    Google ScholarΒ 

  9. Wasson, J. T., Meteorites (Springer-Verlag, New York, 1974).

    BookΒ  Google ScholarΒ 

  10. Schmitt, R. A., Goles, G. G., Smith, R. H., and Osborn, T. W., Meteoritics, 7, 131–213 (1972).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  11. Nichiporuk, W., and Moore, C. B., Geochim. Cosmochim. Acta. 38, 1691–1701(1974).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  12. von Michaelis, H., Ahrens, L. H., and Willis, J. P., Earth planet. Sci. Lett., 5, 387–394 (1969).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  13. Ahrens, L. H., von Michaelis, H., and Fesq, H. W., Earth planet. Sci. Lett., 6, 285–288 (1969).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  14. McCarthy, T. S., and Ahrens, L. H., Earth planet. Sci. Lett., 14, 97–102 (1972).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  15. Moore, C. B., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 137–141 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  16. Binz, C. M., Kurimoto, R. K., and Lipschutz, M. E., Geochim. Cosmochim. Acta, 38, 1579–1606 (1974).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  17. Case, D. R., Laul, J. C., Pelly, I. Z., Wechter, M. A., Schmidt-Bleek, F., Bleek, F., and Lipschutz, M. E., Geochim. Cosmochim. Acta. 37, 19–33 (1973).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  18. Moore, C. B., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 221–227 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  19. Anders, E., Higuchi, H., Ganapathy, R., and Morgan, J. W., Geochim. Cosmochim. Acta. 40, 1131–1139 (1976).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  20. Keays, R. R., Ganapathy, R., and Anders, E., Geochim. Cosmochim. Acta. 35, 337–363 (1971).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  21. Laul, J. C., Ganapathy, R., Anders, E., and Morgan, J. W., Geochim. Cosmochim. Acta. 37, 329–357 (1973).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  22. KrΓ€henbΓΌhl, U., Morgan, J. W., Ganapathy, R., and Anders, E., Geochim. Cosmochim. Acta, 37, 1353–1370 (1973).

    ArticleΒ  ADSΒ  Google ScholarΒ 

  23. Chou, C.-L., Baedecker, P. A., and Wasson, J. T., Geochim. Cosmochim. Acta, 40, 85–94 (1976).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  24. Baedecker, P. A., and Wasson, J. T., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 241–250 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  25. Nakamura, N., Geochim. Cosmochim. Acta. 38, 757–775 (1974).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  26. Masuda, A., Nakamura, N., and Tanaka, T., Geochim. Cosmochim. Acta. 37, 239–248 (1973).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  27. Ehmann, W. D., and Rebagay, T. V., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 307–318 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  28. Ganapathy, R., Papia, G. M., and Grossman, L., Earth planet. Sci. Lett., 29, 302–308 (1976).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  29. Ehmann, W. D., Chyi, L. L., Garg, A. N., Hawke, B. R., Ma, M.-S., Miller, M. D., James, W. D., Jr, and Pacer, R. A., in Proc. 6th Lunar Sci. Conf. (edit. by Merrill, R. B.), 1351–1361 (Pergamon, New York, 1975).

    Google ScholarΒ 

  30. Morgan, J. W., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 451–462 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  31. Baedecker, P. A., in Handbook of Elemental Abundances in Meteorites (edit. by Mason, B.), 463–472 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

  32. Ehmann, W. D., in Handbook of Elemental Abundances in Meteorites (edit, by Mason, B.), 479–485 (Gordon and Breach, New York, 1971).

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DAVIS, A., GROSSMAN, L. & GANAPATHY, R. Yes, Kakangari is a unique chondrite. Nature 265, 230–232 (1977). https://doi.org/10.1038/265230a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265230a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter β€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing