Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 22 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 261, 583 - 585 (17 June 1976); doi:10.1038/261583a0

In vivo evidence for a circadian rhythm in membranes of Gonyaulax

MARINA ADAMICH, PHILIP C. LARIS & BEATRICE M. SWEENEY

Department of Biological Sciences, University of California, Santa Barbara, Santa Barbara, California 93106

IT has been suggested that rhythmic oscillations in membranes are the underlying mechanism for endogenous circadian rhythms1,2 To support this suggestion, periodic oscillations in membranes of organisms displaying circadian rhythmicity must first be demonstrated. Rhythmic oscillations associated with membranes have been observed in the spontaneous firing of the optic nerve of Aplysia 3 and in the transmembrane potential of the pulvini of Samanea 4. It is not clear if these membrane-associated rhythms are a function of specialised cells, or are basic phenomena of circadian rhythms. The only membrane-associated rhythm described in a unicellular organism so far is that of a circadian rhythm in particle distribution of one of the membranes of Gonyaulax polyedra 5. We have now investigated the rhythmic changes in the membrane potential of G. polyedra. We used the method of Hoffman and Laris6, in which fluorescent cyanine dyes are used to monitor the membrane potential in vivo of cells not amenable to the insertion of microelectrodes, in this case because of their small size and lack of a central vacuole. Our results suggest a temporal reorganisation of one of the membranes of Gonyaulax with circadian time.

------------------

References

1. Sweeney, B. M., Int. J. Chronobiol., 2, 25–33 (1974).
2. Njus, D., Sulzman, F. M., and Hastings, J. W., Nature, 248, 116–120 (1974).
3. Jacklet, J. W., Science, 164, 562–563 (1969).
4. Racusen, R., and Satter, R. L., Nature, 255, 408–410 (1975).
5. Sweeney, B. M., Am. Inst. biol. Sci. meeting, 1975 (Abstr.).
6. Hoffman, J. F., and Laris, P. G., J. Physiol., Lond., 239, 519–552 (1974).
7. Guillard, R. R. L., and Ryther, J. H., Can. J. Microbiol., 8, 229–239 (1962).
8. Laris, P. C., Bahr, D. P., and Jaffee, R. R. J., Biochim. biophys. Acta, 376, 415–475 (1975).
9. Löeblich, A. R., III, Proc. N. Am. Paleontol. Convention, Part G, 867–929 (1969).
10. Adamich, M., and Sweeney, B. M., Planta (in the press).
11. Gaff, D. F., and OKong'O-Ogola, O., J. exp. Bot., 22, 756–758 (1971).
12. Stadleman, E. J., and Kinzel, H., in Methods in Cell Physiology (edit. by Prescott, D. M.), 325–372 (Academic, New York, 1972).
13. Laris, P. C., Pershadsingh, H. A., and Johnstone, R. M., J. gen. Physiol., 66, 14a (1975).
14. Sims, P. J., Waggoner, A. S., Wang, C. H., and Hoffman, J. F., Biochemistry, 13, 3315–3330 (1974).
15. Huebner, J. S., Biochim. biophys. Acta, 406, 178–186 (1975).
16. Sweeney, B. M., Pl. Physiol., Lancaster, 53, 337–342 (1974).
17. Lowry, O. H., Rosebrough, N. J., Farr, L. A., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).
18. Undenfriend, S., Stein, S., Böhlen, P., and Dairman, W., Science, 178, 871–872 (1972).
19. DeGier, J., Haest, C. W. M., Mandersloot, G., and Van Deenen, L. L. M., Biochem. biophys. Acta, 211, 373–375 (1970).
20. Van Deenen, L. L. M., Fedn Proc., 30, 1032 (1971).
21. Scarpa, A., and DeGier, J., Biochem. biophys. Acta, 241, 789–797 (1971).
22. DeGier, J., and Scarpa, A., Abstr. FEBS Meet., 520 (1971).
23. Korasne, S., Eisenman, G., and Szabo, G., Science, 174, 412–415 (1971).
24. Stark, G., Benz, R., Pohl, G. W., and Janko, K., Biochim. biophys. Acta, 266, 603–612 (1972).
25. Adamich, M., Sweeney, B. M., ICN-UCLA Winter Conf. molec. Cell Biol., No. 68, 42 (University of California, Los Angeles, 1976).
26. Stadelman, E. J., A. Rev. Pl. Physiol., 20, 585–606 (1969).



© 1976 Nature Publishing Group
Privacy Policy