Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo evidence for a circadian rhythm in membranes of Gonyaulax

Abstract

IT has been suggested that rhythmic oscillations in membranes are the underlying mechanism for endogenous circadian rhythms1,2 To support this suggestion, periodic oscillations in membranes of organisms displaying circadian rhythmicity must first be demonstrated. Rhythmic oscillations associated with membranes have been observed in the spontaneous firing of the optic nerve of Aplysia3 and in the transmembrane potential of the pulvini of Samanea4. It is not clear if these membrane-associated rhythms are a function of specialised cells, or are basic phenomena of circadian rhythms. The only membrane-associated rhythm described in a unicellular organism so far is that of a circadian rhythm in particle distribution of one of the membranes of Gonyaulax polyedra5. We have now investigated the rhythmic changes in the membrane potential of G. polyedra. We used the method of Hoffman and Laris6, in which fluorescent cyanine dyes are used to monitor the membrane potential in vivo of cells not amenable to the insertion of microelectrodes, in this case because of their small size and lack of a central vacuole. Our results suggest a temporal reorganisation of one of the membranes of Gonyaulax with circadian time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sweeney, B. M., Int. J. Chronobiol., 2, 25–33 (1974).

    CAS  PubMed  Google Scholar 

  2. Njus, D., Sulzman, F. M., and Hastings, J. W., Nature, 248, 116–120 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Jacklet, J. W., Science, 164, 562–563 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Racusen, R., and Satter, R. L., Nature, 255, 408–410 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Sweeney, B. M., Am. Inst. biol. Sci. meeting, 1975 (Abstr.).

  6. Hoffman, J. F., and Laris, P. G., J. Physiol., Lond., 239, 519–552 (1974).

    Article  CAS  Google Scholar 

  7. Guillard, R. R. L., and Ryther, J. H., Can. J. Microbiol., 8, 229–239 (1962).

    Article  CAS  Google Scholar 

  8. Laris, P. C., Bahr, D. P., and Jaffee, R. R. J., Biochim. biophys. Acta, 376, 415–475 (1975).

    Article  CAS  Google Scholar 

  9. Löeblich, A. R., III, Proc. N. Am. Paleontol. Convention, Part G, 867–929 (1969).

  10. Adamich, M., and Sweeney, B. M., Planta (in the press).

  11. Gaff, D. F., and OKong'O-Ogola, O., J. exp. Bot., 22, 756–758 (1971).

    Article  Google Scholar 

  12. Stadleman, E. J., and Kinzel, H., in Methods in Cell Physiology (edit. by Prescott, D. M.), 325–372 (Academic, New York, 1972).

    Google Scholar 

  13. Laris, P. C., Pershadsingh, H. A., and Johnstone, R. M., J. gen. Physiol., 66, 14a (1975).

    Google Scholar 

  14. Sims, P. J., Waggoner, A. S., Wang, C. H., and Hoffman, J. F., Biochemistry, 13, 3315–3330 (1974).

    Article  CAS  Google Scholar 

  15. Huebner, J. S., Biochim. biophys. Acta, 406, 178–186 (1975).

    Article  CAS  Google Scholar 

  16. Sweeney, B. M., Pl. Physiol., Lancaster, 53, 337–342 (1974).

    Article  CAS  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, L. A., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    CAS  Google Scholar 

  18. Undenfriend, S., Stein, S., Böhlen, P., and Dairman, W., Science, 178, 871–872 (1972).

    Article  ADS  Google Scholar 

  19. DeGier, J., Haest, C. W. M., Mandersloot, G., and Van Deenen, L. L. M., Biochem. biophys. Acta, 211, 373–375 (1970).

    Article  CAS  Google Scholar 

  20. Van Deenen, L. L. M., Fedn Proc., 30, 1032 (1971).

    Google Scholar 

  21. Scarpa, A., and DeGier, J., Biochem. biophys. Acta, 241, 789–797 (1971).

    Article  CAS  Google Scholar 

  22. DeGier, J., and Scarpa, A., Abstr. FEBS Meet., 520 (1971).

  23. Korasne, S., Eisenman, G., and Szabo, G., Science, 174, 412–415 (1971).

    Article  ADS  Google Scholar 

  24. Stark, G., Benz, R., Pohl, G. W., and Janko, K., Biochim. biophys. Acta, 266, 603–612 (1972).

    Article  CAS  Google Scholar 

  25. Adamich, M., Sweeney, B. M., ICN-UCLA Winter Conf. molec. Cell Biol., No. 68, 42 (University of California, Los Angeles, 1976).

  26. Stadelman, E. J., A. Rev. Pl. Physiol., 20, 585–606 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ADAMICH, M., LARIS, P. & SWEENEY, B. In vivo evidence for a circadian rhythm in membranes of Gonyaulax. Nature 261, 583–585 (1976). https://doi.org/10.1038/261583a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261583a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing