Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Friday 26 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 259, 138 - 140 (15 January 1976); doi:10.1038/259138a0

Hereditary persistence of foetal haemoglobin with β-chain synthesis in cis position (Gγ+-HPFH) in a negro family

SHLOMO FRIEDMAN & ELIAS SCHWARTZ

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104

HEREDITARY persistence of foetal haemoglobin (HPFH) is an uncommon condition described mainly in negroes and Greeks. Although this genetic disorder is rare, it has been very important in the study of the arrangement of human globin genes on chromosomes and in the investigation of the regulation of foetal haemoglobin synthesis. It is not always possible to distinguish clearly between HPFH and thalassaemia and there is considerable genetic heterogeneity in these conditions. A majority of patients with HPFH have an increased amount of foetal haemoglobin, normal or near normal red cell indices, Hb F in each red cell, an absence of clinical manifestations in the simple heterozygous state or in combination with Hb S, Hb C, or Hb E, and balanced globin synthesis1. Two different forms of γ chains are normally synthesised, with either glycine or alanine at the γ 136 position. Although the majority of negro heterozygotes for HPFH have both glycine and alanine at γ 136, several patients have had only glycine2–5. There was no synthesis of β or δ chains in the cis position to the HPFH gene in any of the appropriate negro cases reported previously. We describe here a negro family in which the proposita had Hb S-HPFH with β-chain synthesis in the cis position to the HPFH gene.

------------------

References

1. Weatherall, D. J., and Clegg, J. B., Br. J. Haemat., 29, 191–198 (1975).
2. Huisman, T. H. J., et al., Ann. N. Y. Acad. Sci., 165, 320–331 (1969).
3. Huisman, T. H. J., et al., New Engl. J. Med., 285, 711–716 (1971).
4. Huisman, T. H. J., et al., Ann. N. Y. Acad. Sci., 232, 107–124 (1974).
5. Sukumaran, P. K., et al., Br. J. Haemat., 23, 403–417 (1972).
6. Nalbadian, R. M., et al., Clin. Chem., 17, 1028–1032 (1971).
7. Asakura, T., Segal, M. E., Friedman, Sh., and Schwartz, E., J. Am. med. Ass., 233, 156–157 (1975).
8. Kleihauer, E., Braun, H., and Betke, K., Klin. Wschr., 35, 637–638 (1957).
9. Clegg, J. B., Naughton, M. A., and Weatherall, D. J., Nature, 207, 945–947 (1965).
10. Gill, F. M., and Schwartz, E., J. clin. Invest., 52, 709–714 (1973).
11. Schroeder, W. A., et al., Proc. natn. Acad. Sci. U.S.A., 60, 537–544 (1968).
12. Weatherall, D. J., et al., Br. J. Haemat., 29, 205–220 (1975).
13. Sofronaidou, K., Wood, W. G., Nute, P. E., and Stamatoyannopaulos, G., Br. J. Haemat., 29, 137–148 (1975).
14. Natta, C. L., Niazi, G. A., Ford, S., and Bank, A., J. clin. Invest., 54, 433–438 (1974).
15. Friedman, S., Schwartz, E., Ahern, E., and Ahern, V., Br. J. Haemat. (in the press).
16. Friedman, S., Hamilton, R. W., and Schwartz, E., J. clin. Invest., 52, 1453–1459 (1973).
17. Friedman, S., Schwartz, E., Ahern, V., and Ahern, E., Br. J. Haemat., 28, 505–513 (1974).
18. Mann, J. R., MacNeish, A. S., Bannister, D., Clegg, J. B., Wood, W. G., and Weatherall, D. J., Br. J. Haemat., 23, 393–402 (1972).
19. Huisman, T. H. J., Wrightstone, R. N., Wilson, J. B., Schroeder, W. A., and Kendall, A. G., Archs Biochem. Biophys., 153, 850–853 (1972).
20. Smith, D. H., Clegg, J. B., Weatherall, D. J., and Gilks, H. B., Nature new Biol., 246, 184–186 (1973).
21. Huisman, T. H. J., Miller, A., and Schroeder, W. A., Am. J. hum. Genet. (in the press).



© 1976 Nature Publishing Group
Privacy Policy