Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Sunday 22 October 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 258, 359 - 361 (27 November 1975); doi:10.1038/258359a0

Mutation rate, genome size and their relation to the rec concept


Departments of Natural Science and Biology, York University, Downsview, Ontario, Canada M3J 1P3

ORGANISMS vary greatly in genome size, that is, in the amount of DNA comprising the haploid genome. Rates of radiation-induced mutation expressed as mutations per locus per rad, also differ widely among organisms, but it is surprising that mutation rates and genome size are correlated1. This correlation is unexpected because proteins are of a similar size in all organisms, implying that structural genes must also be of a similar size. Accordingly, one would expect that, although the overall mutation rate would be proportional to the overall number of genes, the mutation rate per locus would be similar in all organisms or, at least, bear no relation to genome size. Surveying published data, however, Abrahamson et al. 1 found a direct correlation between rate of radiation-induced mutation and size of the haploid genome from Escherichia coli to Hordeum vulgare (the ABCW relationship). We wondered whether rates of chemically induced mutation would also be related to genome size, both because of the practical importance of being able to extrapolate to the genetic effect of a chemical on the human population and because the information might help to elucidate the mechanism underlying the ABCW relationship.



1. Abrahamson, S., Bender, M. A., Conger, A. D., and Wolff, S., Nature, 245, 460–462 (1973).
2. Judd, B. H., Shen, M. W., and Kaufman, T. C., Genetics, 71, 139–156 (1972).
3. Bishop, J. O., Cell, 2, 81–86 (1974).
4. Britten, R. J., and Davidson, E. H., Science, 165, 349–357 (1969).
5. King, M. C., and Wilson, A. C., Science, 188, 107–116 (1975).
6. Bridges, B. A., Environ. Hlth Perspect., 6, 221–227 (1973).
7. Crow, F., Environ. Hlth Perspect., 6, 1–5 (1973).
8. Lethbak, A., Christiansen, C., and Stenderup, A., J. gen. Microbiol., 64, 377–380 (1970).
9. Loveless, A., and Howarth, S., Nature, 184, 1780–1782 (1959).
10. Minagawa, T., Wagner, B., Strauss, B., Archs Biochem. Biophys., 80, 442–445 (1959).
11. de Serres, F. J., Brockman, H. E., Barnett, W. E., and Kølmark, H. C., Mutat. Res., 12, 129–142 (1971).
12. Ogur, M., Minckler, S., Lindegren, G., and Lindegren, C. C., Archs Biochem. Biophys., 40, 175–184 (1952).
13. Loprieno, N., Mutat. Res., 3, 486–493 (1966).
14. Lim, J. K., and Snyder, L. A., Mutat. Res., 6, 129–137 (1968).
15. Alikhanian, S. J., Zool. Zhur., 16 (1937).
16. Bennett, M. D., Proc. R. Soc., B181, 109–135 (1972).
17. Rédei, G. P., and Li, S. L., Genetics, 61, 453–459 (1969).
18. Moh, C. C., Mutat. Res., 7, 469–471 (1969).
19. Bachmann, K., Chromosoma, 37, 85–93 (1972).
20. Chu, E. H. Y., and Mailing, H. V., Genetics, 61, 1306–1312 (1968).
21. Amano, E., and Smith, H. H., Mutat. Res., 2, 344–351 (1965).
22. Rees, H., and Jones, R. N., Int. Rev. Cytol., 32, 53 (1972).
23. Ardashnikov, S. N., Soyfer, V. N., and Goldfarb, D. M., Biochem. biophys. Res. Commun., 16, 455–459 (1964).
24. Strauss, B. S., Nature, 191, 730–731 (1961).
25. Brown, D. F., Mutat. Res., 3, 365–373 (1966).
26. Sinsheimer, R. L., Procedures in Nucleic Acid Research (edit. by Cantoni, and Davies), 559–576 (Harper and Row, New York, 1966).
27. Tessman, I., Poddar, R. K., and Kumar, S., J. molec. Biol., 9, 352–363 (1964).

© 1975 Nature Publishing Group
Privacy Policy