Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Monday 21 August 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 256, 640 - 642 (21 August 1975); doi:10.1038/256640a0

Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse


Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo, Japan

RANDOM X inactivation makes the female mammal a natural mosaic for clones of cells having either the maternally derived X (Xm) or paternally derived one (Xp) which is genetically inactive1. There are, however, instances in which inactivation is obviously not random2–7. Non-randomness was inferred from studies made on differentiated cells remote from early embryonic cells in which inactivation occurred. Thus it is not clear whether the randomness of the X inactivation process was influenced or whether cell selection occurring after random inactivation was responsible for the ultimate non-random appearance4–9. In an effort to determine the embryonic stage at which the X chromosome initiates differentiation in famale mouse embryos heterozygous for Cattanach's translocaton10, we found that the mosaic composition was consistently biased in extraembryonic membranes, whereas it was not necessarily so in the embryonic body.



1. Lyon, M. F., Nature, 190, 372–373 (1961).
2. Lyon, M. F., Phil. Trans. R. Soc. Lond., B259, 41–52 (1970).
3. Lyon, M. F., Biol. Rev., 47, 1–35 (1972).
4. Hamerton, J. L., Giannelli, F., Collins, F., Hallett, J., Fryer, A., and McGuire, V. M. Nature, 222, 1277–1278 (1969).
5. Giannelli, F., and Hamerton, J. L., Nature, 232, 315–319 (1971).
6. Hamerton, J. L., Richardson, B. J., Gee, P. A., Allen, W. R., and Short, R. V., Nature, 232, 312–315 (1971).
7. Cohen, M. M., and Rattazzi, M. C., Proc. natn. Acad. Sci. U.S.A., 68, 544–548 (1971).
8. Mukherjee, B. B., Mukherjee, A. B., and Mukherjee, A. B., Nature, 228, 1321–1322 (1970).
9. Mukherjee, B. B., and Milet, R. G., Proc. natn. Acad. Sci. U.S.A., 69, 37–39 (1972).
10. Cattanach, B. M., Z. Vererbungsl., 92, 165–182 (1961).
11. Francke, U., and Nesbitt, M. N., Proc. natn. Acad. Sci. U.S.A., 68, 2918–2920 (1971).
12. Kouri, R. E., Miller, D. A., Miller, O. J., Dev, V. G., Grewal, M. S., and Hutton, J. J., Genetics, 69, 129–132 (1971).
13. Ohno, S., and Cattanach, B. M., Cytogenetics, 1, 129–140 (1962).
14. Evans, H. J., Ford, C. E., Lyon, M. F., and Gray, J., Nature, 206 900–903 (1965).
15. Nesbitt, M. N., and Gartler, S. M., Cytogenetics, 9, 212–221 (1970).
16. Rattazzi, M. C., and Cohen, M. M., Nature, 237, 393–395 (1972).
17. Ray, M., Gee, P. A., Richardson, B. J., and Hamerton, J. L., Nature, 237, 396–397 (1972).
18. Takagi, N., Expl Cell Res., 86, 127–135 (1974).
19. Dutrillaux, B., Laurent, C., Couturier, J., and Lejeune, J., C. r. hebd. Séanc. Acad. Sci. Paris, 276, 3179–3181 (1973).
20. Dutrillaux, B., and Fosse, A.-M., Annls Genet., 17, 207–211 (1974).
21. Wroblewska, J., and Dyban, A. P., Stain Technol., 44, 147–150 (1969).
22. Takagi, N., and Oshimura, M., Expl Cell Res., 78, 127–135 (1973).
23. Drews, U., Blecher, S. R., Owen, D. A., and Ohno, S., Cell, 1, 3–8 (1974).
24. Ohno, S., Geller, L. N., and Kan, J., Cell, 1, 175–184 (1974).
25. Cattanach, B. M., and Perez, J. N., Genet. Res., 15, 43–53 (1970).
26. Cooper, D. W., Nature, 230, 292–294 (1971).
27. Brown, S. W., and Chandra, S. H., Proc. natn. Acad. Sci. U.S.A., 70, 195–199 (1973).

© 1975 Nature Publishing Group
Privacy Policy