Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse

Abstract

RANDOM X inactivation makes the female mammal a natural mosaic for clones of cells having either the maternally derived X (Xm) or paternally derived one (Xp) which is genetically inactive1. There are, however, instances in which inactivation is obviously not random2–7. Non-randomness was inferred from studies made on differentiated cells remote from early embryonic cells in which inactivation occurred. Thus it is not clear whether the randomness of the X inactivation process was influenced or whether cell selection occurring after random inactivation was responsible for the ultimate non-random appearance4–9. In an effort to determine the embryonic stage at which the X chromosome initiates differentiation in famale mouse embryos heterozygous for Cattanach's translocaton10, we found that the mosaic composition was consistently biased in extraembryonic membranes, whereas it was not necessarily so in the embryonic body.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyon, M. F., Nature, 190, 372–373 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Lyon, M. F., Phil. Trans. R. Soc. Lond., B 259, 41–52 (1970).

    Article  CAS  Google Scholar 

  3. Lyon, M. F., Biol. Rev., 47, 1–35 (1972).

    Article  CAS  Google Scholar 

  4. Hamerton, J. L., Giannelli, F., Collins, F., Hallett, J., Fryer, A., and McGuire, V. M. Nature, 222, 1277–1278 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Giannelli, F., and Hamerton, J. L., Nature, 232, 315–319 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Hamerton, J. L., Richardson, B. J., Gee, P. A., Allen, W. R., and Short, R. V., Nature, 232, 312–315 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, M. M., and Rattazzi, M. C., Proc. natn. Acad. Sci. U.S.A., 68, 544–548 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Mukherjee, B. B., Mukherjee, A. B., and Mukherjee, A. B., Nature, 228, 1321–1322 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Mukherjee, B. B., and Milet, R. G., Proc. natn. Acad. Sci. U.S.A., 69, 37–39 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Cattanach, B. M., Z. Vererbungsl., 92, 165–182 (1961).

    CAS  PubMed  Google Scholar 

  11. Francke, U., and Nesbitt, M. N., Proc. natn. Acad. Sci. U.S.A., 68, 2918–2920 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Kouri, R. E., Miller, D. A., Miller, O. J., Dev, V. G., Grewal, M. S., and Hutton, J. J., Genetics, 69, 129–132 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohno, S., and Cattanach, B. M., Cytogenetics, 1, 129–140 (1962).

    Article  CAS  Google Scholar 

  14. Evans, H. J., Ford, C. E., Lyon, M. F., and Gray, J., Nature, 206 900–903 (1965).

    Article  ADS  CAS  Google Scholar 

  15. Nesbitt, M. N., and Gartler, S. M., Cytogenetics, 9, 212–221 (1970).

    Article  CAS  Google Scholar 

  16. Rattazzi, M. C., and Cohen, M. M., Nature, 237, 393–395 (1972).

    Article  ADS  CAS  Google Scholar 

  17. Ray, M., Gee, P. A., Richardson, B. J., and Hamerton, J. L., Nature, 237, 396–397 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Takagi, N., Expl Cell Res., 86, 127–135 (1974).

    Article  CAS  Google Scholar 

  19. Dutrillaux, B., Laurent, C., Couturier, J., and Lejeune, J., C. r. hebd. Séanc. Acad. Sci. Paris, 276, 3179–3181 (1973).

    CAS  Google Scholar 

  20. Dutrillaux, B., and Fosse, A.-M., Annls Genet., 17, 207–211 (1974).

    CAS  Google Scholar 

  21. Wroblewska, J., and Dyban, A. P., Stain Technol., 44, 147–150 (1969).

    Article  Google Scholar 

  22. Takagi, N., and Oshimura, M., Expl Cell Res., 78, 127–135 (1973).

    Article  CAS  Google Scholar 

  23. Drews, U., Blecher, S. R., Owen, D. A., and Ohno, S., Cell, 1, 3–8 (1974).

    Article  Google Scholar 

  24. Ohno, S., Geller, L. N., and Kan, J., Cell, 1, 175–184 (1974).

    Article  Google Scholar 

  25. Cattanach, B. M., and Perez, J. N., Genet. Res., 15, 43–53 (1970).

    Article  CAS  Google Scholar 

  26. Cooper, D. W., Nature, 230, 292–294 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Brown, S. W., and Chandra, S. H., Proc. natn. Acad. Sci. U.S.A., 70, 195–199 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TAKAGI, N., SASAKI, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975). https://doi.org/10.1038/256640a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/256640a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing