Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unfolding and Hydrogen Exchange of Proteins: the Three-dimensional Ising Lattice as a Model

Abstract

WE have noted a discrepancy between the models which are used to explain two kinds of experimental data related to protein unfolding. On the one hand, recent experiments on the reversible unfolding of the proteins ribonuclease, chymotrypsinogen and myoglobin, as revealed by changes in optical rotation and light absorption as a function of temperature or pH, demonstrate that such transitions can be described by a two state or all-or-none model1–3, in which partly folded molecules are not observed. On the other hand, there are the results on isotopic hydrogen exchange of proteins4,5. This exchange (for example, >NH + D2O→>ND + DHO) is possible only for hydrogen atoms which are exposed to the solvent. Hence a portion of the hydrogen atoms of a protein molecule exchanges more slowly than do exposed hydrogens, and the rate of exchange is equal to the product of the exchange rate for free hydrogens and the degree of unfolding (kobs=ko·θunf). Experimentally one observes an enormous variety of exchange rates among buried peptide group hydrogens, whereas the two state model predicts a single degree of unfolding as well as a single rate of unfolding and hence a single rate of exchange characteristic of all buried hydrogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brandts, J. F., J. Amer. Chem. Soc., 86, 4291 (1964).

    Article  CAS  Google Scholar 

  2. Hermans, J., and Acampora, G., J. Amer. Chem. Soc., 89, 1547 (1967).

    Article  CAS  Google Scholar 

  3. Tanford, C., Pain, R. H., and Otchin, N. S., J. Mol. Biol, 15, 489 (1966).

    Article  CAS  Google Scholar 

  4. Hvidt, A., and Linderstrøm-Lang, K., Biochim. Biophys. Acta, 14, 574 (1954).

    Article  CAS  Google Scholar 

  5. Hvidt, A., and Nielsen, S. O., Adv. Protein Chem., 21, 1287 (1966).

    Google Scholar 

  6. Hill, T. L., Statistical Mechanics (McGraw-Hill, New York, 1956).

    MATH  Google Scholar 

  7. Ising, E., Z. Phys., 31, 253 (1923).

    Article  ADS  Google Scholar 

  8. Zimm, B. H., and Bragg, J. K., J. Chem. Phys., 31, 526 (1959).

    Article  ADS  CAS  Google Scholar 

  9. Gibbs, J. H., and DiMarzio, E. A., J. Chem. Phys., 30, 271 (1959).

    Article  ADS  CAS  Google Scholar 

  10. Peller, L., J. Phys. Chem., 63, 1194 (1959).

    Article  CAS  Google Scholar 

  11. Hill, T. L., J. Chem. Phys., 30, 383 (1959).

    Article  ADS  CAS  Google Scholar 

  12. Lumry, R., Biltonen, E., and Brandts, F. F., Biopolymers, 4, 917 (1966).

    Article  CAS  Google Scholar 

  13. Tanford, C., Adv. Protein Chem., 23, 121 (1968).

    Article  CAS  Google Scholar 

  14. Zimm, B. H., in Polyamino Acids, Polypeptides and Proteins (edit. by Stahmann, M. A.), 229 (Univ. of Wisconsin Press, Madison, 1962).

    Google Scholar 

  15. Zimm, B. H., Doty, P., and Iso, K., Proc. US Nat. Acad. Sci., 45, 1601 (1959).

    Article  ADS  CAS  Google Scholar 

  16. Hermans, J., J. Amer. Chem. Soc., 88, 2418 (1966).

    Article  CAS  Google Scholar 

  17. Karasz, F. E., and O'Reilly, J. M., Biopolymers, 4, 1015 (1966).

    Article  CAS  Google Scholar 

  18. Ackermann, T., and Rüterjans, H., Z. Physik. Chemie, 41, 116 (1969).

    Article  Google Scholar 

  19. Bryan, W. P., and Nielsen, S. O., Biochim. Biophys. Acta, 42, 552 (1960).

    Article  CAS  Google Scholar 

  20. Benson, E. S., CR Trav. Lab. Carlsberg, 31, 235 (1959).

    CAS  Google Scholar 

  21. Benson, E. S., and Linderstrø;m-Lang, K., Biochim. Biophys. Acta, 32, 579 (1959).

    Article  CAS  Google Scholar 

  22. Schechter, A. N., Morávek, L., and Anfinsen, C. B., Fed. Proc., 28, 344 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HERMANS, J., LOHR, D. & FERRO, D. Unfolding and Hydrogen Exchange of Proteins: the Three-dimensional Ising Lattice as a Model. Nature 224, 175–177 (1969). https://doi.org/10.1038/224175a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/224175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing