WEB FOCUS

Ion channels: structure and function

In this focus:

Current research | Resources | Archive

Ion channels allow the movement of ions across cell membranes, and therefore fundamental physiological processes such as muscle contraction. In 1998, we saw for the first time what an ion channel actually looks like in a paper describing the crystal structure of a potassium channel. Now we have an array of ion channel structures, which we exemplify in this regularly updated collection of papers that illustrate the structural revolution that the field is currently experiencing.

Top

Current research

ARTICLES

Structural mechanism of plant aquaporin gating

Susanna Törnroth-Horsefield et al.

Plants counteract fluctuations in water supply by regulating all aquaporins in the cell plasma membrane. Channel closure results either from the dephosphorylation of two.

Nature AOP, (07 December 2005) doi:10.1038/nature04316


Lipid-protein interactions in double-layered two-dimensional AQP0 crystals

Tamir Gonen et al.

Lens-specific aquaporin-0 (AQP0) functions as a specific water pore and forms the thin junctions between fibre cells. Here we describe a 1.9 � resolution structure.

Nature 438, 633–638 (01 December 2005) doi:10.1038/nature04321


NEWS AND VIEWS

Cell biology: A greasy grip

Anthony G. Lee

How do the lipids and proteins of the cell membrane interact to create a functioning barrier for the cell? A high-resolution structure of a membrane

Nature 438, 569–570 (01 December 2005) doi:10.1038/438569a

Top

Resources

Top

Archive

NEWS FEATURE

Ion channel structures: They said it couldn't be done...

Alison Abbott

Nature 418, 268–269 (18 July 2002) doi:10.1038/418268a


REVIEW

The voltage-gated potassium channels and their relatives

Gary Yellen

Nature 419, 35–42 (05 September 2002) doi:10.1038/nature00978


LETTERS

Structure and different conformational states of native AMPA receptor complexes

Terunaga Nakagawa et al.

Ionotropic glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system.

Nature 433, 545–549 (03 February 2005) doi:10.1038/nature03328


Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation

Qiu-Xing Jiang et al.

Nature 430, 806–810 (12 August 2004) doi:10.1038/nature02735


Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain

Filip Van Petegem et al.

Nature 429, 671–675 (10 June 2004) doi:10.1038/nature02588


Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels

Yu-hang Chen et al.

Nature 429, 675–680 (10 June 2004) doi:10.1038/nature02641


Aquaporin-0 membrane junctions reveal the structure of a closed water pore

Tamir Gonen et al.

Nature 429, 193–197 (13 May 2004) doi:10.1038/nature02503


ARTICLES

Subunit arrangement and function in NMDA receptors

Hiroyasu Furukawa et al.

Excitatory neurotransmission mediated by NMDA (N-methyl-d-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels.

Nature 438, 185–192 (10 November 2005) doi:10.1038/nature04089


Structure and gating mechanism of the acetylcholine receptor pore

Atsuo Miyazawa et al.

Nature 423, 949–955 (26 June 2004) doi:10.1038/nature01748


X-ray structure of a voltage-dependent K+ channel

Youxing Jiang et al.

Nature 423, 33–41 (01 May 2003) doi:10.1038/nature01580


The principle of gating charge movement in a voltage-dependent K+ channel

Youxing Jiang et al.

Nature 423, 42–48 (01 May 2003) doi:10.1038/nature01581


Open channel structure of MscL and the gating mechanism of mechanosensitive channels

Eduardo Perozo et al.

Nature 418, 942–948 (29 August 2002) doi:10.1038/nature00992


Crystal structure and mechanism of a calcium-gated potassium channel

Youxing Jiang et al.

Nature 417, 515–522 (30 May 2002) doi:10.1038/417515a


Mechanism of glutamate receptor desensitization

Yu Sun et al.

Nature 417, 245–253 (16 May 2002) doi:10.1038/417245a


X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion

Raimund Dutzler et al.

Nature 415, 287–294 (17 January 2002) doi:10.1038/415287a


Structural basis of water-specific transport through the AQP1 water channel

Haixin Sui et al.

Nature 414, 872–878 (20 December 2001) doi:10.1038/414872a


Energetic optimization of ion conduction rate by the K+ selectivity filter

João H. Morais-Cabral et al.

Nature 414, 37–42 (01 November 2001) doi:10.1038/414037a


Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution

Yufeng Zhou et al.

Nature 414, 43–48 (01 November 2001) doi:10.1038/414043a


Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

Ming Zhou et al.

Nature 411, 657–661 (07 June 2001) doi:10.1038/411657a


Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors

Katjuša Brejc et al.

Nature 411, 269–276 (17 May 2001) doi:10.1038/411269a


NEWS & VIEWS

Structure and gating mechanism of the acetylcholine receptor pore

Atsuo Miyazawa et al.

Nature 423, 949–955 (26 June 2004) doi:10.1038/nature01748


Structural biology: Life's transistors

Fred J. Sigworth

Nature 423, 21–22 (1 May 2003) doi:10.1038/423021a


Ion channels: An open and shut case

Maria Schumacher and John P. Adelman

Nature 417, 501–502 (30 May 2002) doi:10.1038/417501a


Cell biology: Chloride channels are different

Thomas J. Jentsch

Nature 415, 276–277 (17 January 2002) doi:10.1038/415276a


See potassium run

Christopher Miller

Nature 414, 23–24 (01 November 2001) doi:10.1038/414023a


Fifty years of inactivation

Richard W. Aldrich

Nature 411, 643–644 (07 June 2001) doi:10.1038/411643a